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1. Introduction

3 This final report contains a summary of work accomplished on 0. N. R. Contract N00014-

86-K-0370, High-Resolution Radar-Imaging, for the period from 15 January 1989 to 14 January3 1990. Also included is a description of research in progress that will be phased out as funding for

this project has been terminated.3 vThe goal of this project is to formulate and investigate new approaches for forming images

of radar targets from spotlight-mode, delay-doppler measurements. These measurements can be

3 acquired with a high-resolution radar-imaging system operating with an optical- or radio-frequency

carrier. Work in this reporting period has concentrated on our estimation-theory approach toU forming high resolution images. This approach accounts for measurement noise and for the statistical

properties of radar-backscatter data.

I 2. Summary of Work Accomplished

5 2.1 Conventional Approach to Imaging

A computer implementation of the conventional method for forming radar images via the3 two-dimensional Fourier-transform has been implemented by Mr. D. Porter, who is an

undergraduate student in Electrical Engineering. This is used to compare and evaluate images

produced conventionally with those produced using the new methods we are studying. There

are two modules in the program.

The first module produces simulated radar back-scatter data. The simulation calculates

ideal samples of a received signal when a stepped-frequency waveform is reflected off of a

3 target having a specified scattering function and the received signal is mixed with the transmitted

signal and then sampled in quadrature to produce a complex-valued sample. The input of this3 simulation includes the scattering function of the target, the desired resolution, and the base

frequency of the transmitted waveform. Complex samples of the received signal form the

3 output of the program. The computational complexity is O(N4 ), where N is the number of

resolution cells in one target dimension. While coding efficiencies have been exploited to a3 high degree, it may still be desirable to effect a parallel implementation of the calculations for

producing results more quickly for high resolution images when N is large.

I
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The processing of simulated and real-data samples is performed by the second module,

which applies a slightly modified two-dimensional DFT to the samples. The squared magnitude

of the resulting transform is then produced as the target's image. It is assumed that scatterers3 do not migrate out of their resolution cells over the time of data collection, which is an

approximation. When this approximation is not well met, the resulting image is distorted due3 to range walk. A number of ways are described in the literature to deal with this problem.

First of all, the transmitted waveform's base frequency can be chosen sufficiently high so that3 the desired cross range resolution can be achieved without requiring a wide variation in view

angle over the data collection interval. Since only a narrow angle is required, scatterers willU remain within the confines of their original resolution cell. Secondly, the effect of range walk

can be seen as equivalent to collecting polar-formatted data in the spatial frequency domain,

3 yet transforming it as if it were in a rectangular format. Interpolation using, for example,

cubic splines in order to reposition the data samples onto a rectangular grid in the spatial3 frequency domain is a method of "focusing" the image, thereby reducing the error due to range

walk. This focusing method, which we are using, is described by D. Wehner [High Resolution

3 Radar, Artech House, pp. 311-317, 19871.

In addition to the two main modules of the program, additional utility modules have been3 developed for the generation of scattering function files, the display of images on MASSCOMP

and SUN workstations, and the conversion of data between the different formats used on the

3 different computers used in our study.

2.2 Estimation-Theory Approach to Imaging

3 Significant progress has been made on the method we are developing for producing images

of low visibility targets modeled as a diffuse scattering object. The problem of estimating the3 scattering function of a diffuse target is ill posed, with the result that estimates are unstable

having a the rough appearance of an object with strong speckle noise. Thus, regularization is3 required in order to stabilize estimates of the scattering function, which is a two-dimensional

power-density spectrum. Of particular importance in our work over the reporting period is3 the identification of a method for regularizing estimates via the method of sieves introduced

I1 -2-
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by U. Grenander (Abstract Inference, Wiley, 1981). We expect that this will be an important

development not just for radar imaging but also for any problem where a power-density

spectrum must be estimated from noisy data. The asymptotic properties of this method of3 regularization have also been instrumental in the identification of a computational method for

producing target images practically. The inversion of large matrices is not required under some3 conditions that are met is practice, which removes a major impediment previously existing with

our method.3 The following paragraphs contain the abstracts of publications describing our results.

Details are given in the appendices, which contain reprints of the publications.

U 2.2.1 Abstract of: D. Snyder. J. O'Sullivan. and M. Miller. "The Use of Maximum Like-

lihood Estimation for Forming Images of Diffuse Radar Targets from Delay-Doppler

Data." IEEE Trans. on Information Theory. Vol. 35. oo. 536-548. 1989; see Appendix 6.1

for a reprint.

This publication gives the model and fundamental estimation equations for the method

we are developing. The abstract is:

"A new approach to high resolution radar imaging is presented. The starting

point is a model of the radar echo signal based on the physics governing radar3 reflections. This model has been used several times in the past for describing radar

targets that are rough compared to the wavelength of the transmitted radiation.5 Without specifying precisely what the transmitted signal is, a general estimation-based

procedure is derived for obtaining images. After discretizing the model, the radar3 imaging problem reduces to the task of estimating discretized second-order statistics

of the reflectance process of the target. Maximum likelihood estimates of these

5 statistics are obtained as the limit point of an expectation-maximization algorithm."

3
I
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2.2.2 Abstract of: P. Moulin. D. Snyder. and J. O'Sullivan. "Maximum-Likelihood Spec-

trum Estimation of Periodic Processes from Noisy Data." Proc. 1989 CISS Conference-

Johns Hopkins University. Baltimore. MD. March 1989; see Appendix 6.2 for a reprint.3 "We have developed a new approach to maximum-likelihood spectrum estimation

of wide-sense stationary processes from noisy data. A statistical model for the data

3 is defined. The process whose spectrum is sought is wide-sense stationary, periodic

and Gaussian, and its observations are corrupted by an additive white noise [and a3 linear transformation]. [For our radar-imaging problem, the Gaussian process models

radar back-scatter data from a diffuse target, the spectrum is the target's scattering

3 function, the data are corrupted by additive noise, and the linear transformation

depends on the transmitted signal.] A maximum-likelihood formulation of this

problem has been derived, and the equations are solved numerically via the

expectation-maximization algorithm. This approach presents several attractive3 features, an important one being that the noise corrupting the observations is now

taken into account.3 We present some recent developments for this problem. The statistical per-

formance of the new maximum-likelihood spectrum estimator is studied both3 theoretically and numerically. Comparison with traditional estimators, such as the

periodogram, highlight several strong points of the method. We also identify certain

limitations, namely the instability of estimates for high noise levels, [which is due

to the ill-posed nature of the spectrum estimation problem]. These limitations can

3be alleviated if a priori information about the signal is available. Two such problems

are discussed [in Appendix 6.2] in which the information at hand has the form of

* a constraint on the input signal-to-noise ratio.

We show [in Appendix 6.2] how such information can be incorporated in the3 maximum-likelihood estimation procedure. First we assume the signal power to be

known. Theoretical issues of existence and uniqueness of the solution are discussed.

4
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We proceed with a problem in which the information is less complete, when only

an upper bound and/or a lower bound on the signal power are available. The

statistical performance of both constrained estimators is quantitatively studied."

1 2.2.3 Abstract of: J. A. O'Sullivan. D. L. Snyder. and P. Moulin: "The Role of Spectrum

Estimation in Forming High-Resolution Radar Images". Proc, ICASSP 1989. Glasgow.

U U.LK.May 198; see Appendix 6.3 for a reprint.

"We have developed a new approach to forming high-resolution images of radar

targets from delay-doppler, spotlight-mode radar data. This approach is based on

a model for the target's reflectivity in terms of wide-sense stationary, uncorrelated

scatterers having complex-valued Gaussian statistics. The imaging problem is to

estimate the target's scattering function in terms of radar-echo data acquired with

a series of target illuminations. We develop [in Appendix 6.3] a method for solving

this multidimensional spectrum estimation problem through the use of maximum-

likelihood estimation implemented via the expectation-maximization algorithm."

3 2.2.4 Reprint of: P. Moulin, D. L, Snyder. and J. A. O'Sullivan: "A Sieve-Constrained

Maximum-Likelihood Estimator for the Snectrum of a Gaussian Process". Proc. 28th3 Allerton Conference. Urbana-Chamnaign. IL. Sept. 1989; see Appendix 6.4 for a reprint.

"Maximum-likelihood spectrum estimation is an ill-posed problem. In this

3 paper, we use of a method of sieves for addressing this issue. The estimate of the

spectrum is constrained to a subset of some Hilbert space of functions over which3a complete set of nonorthogonal basis functions is defined. The estimate is then

represented by a countable set of coefficients in a nonorthogonal series expansion.3 By defining an appropriate sieve on this countable set, our problem reduces to

maximum-likelihood estimation of the parameters in the sieve. Three main attractive

3 features of this approach are: (1) the nonorthogonal expansion is a convenient

framework for defining the sieve and including a priori information; (2) mean-square

3 consistency of the estimates can be expected; and (3) we have derived a tractable

alternating maximization algorithm for estimating the parameters. The setup of this

I
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problem is general and can be applied without major difficulties to the estimation

Sof higher-dimensional spectral functions, as occurs, for example, in imaging radar

targets from delay-doppler data."

N 2.2.5 Abstract of: J. A. O'Sullivan. P. Moulin. D. L. Snyder. and S. P. Jacobs. "Comouta-

tionai Considerations for Maximum-Likelihood Radar Imaeing." Proc. 1990 CISS. Prince-

ton University; see Appendix 6.5 for a reprint.

"Recent papers have outlined a new approach for spectrum estimation and radar

imaging based on expectation-maximization algorithms for structured covariance

estimation. Performance of this approach has been promising for the problems

studied. Application of this approach to real data sets has been limited, however,

due to the need to invert a matrix whose dimension equals the size of the data set.

For radar applications where an image is to be formed, data sets can be on the order

of 2 '4 for 128 x 128 images. This makes the use of the new approach difficult in

its previously described form. This paper proposes both approximation methods for

inverting typical matrices and constraints on radar transmitted signals which make

maximum likelihood image estimation viable. These constraints may be satisfied

for real signals used in radar imaging systems. Simulations are shown to demonstrate

the performance of the algorithms. Finally, motivated by the images resulting from

the simulations, regularization methods are discussed."

3. Other Project Activities

I 3.1 Optical Radar Workshop

At the request of Dr. W. J. Miceli, Office of Naval Research, Boston MA, we organized

and hosted a one-day workshop on laser radar imaging on April 12, 1989. The purpose of the

meeting was to discuss various tomographic image reconstruction methods, their applicability

I to laser radar imaging, and their implementation via a suitable real-time signal processing

system. The goal was to provide technical interaction among researchers interested in the topic.

I
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Most participants were funded through O.N.R. and/or SDIO/T/IS. The approximately twenty

attendees were from government laboratories and organizations, university research laboratories,

and industry.

1 3.2 Invited Presentations

In August 1989, a special program on the subject of signal processing was held at the

Institute for Mathematics and Its Applications, of the University of Minnesota in Minneapolis.

We were invited to present our work on the radar imaging problem and to prepare a chapter

for a book to be published by the 1. M. A. This chapter, coauthored by J. O'Sullivan and D.

Snyder and titled "High Resolution Radar Imaging Using Spectrum Estimation Methods," will

appear during 1990; a preprint is in Appendix 6.6. As a result of the interest in radar detection

and imaging problems that developed during this program, a second program on the topic of

radar and sonar has been organized and will take place in June 1990 at the I. M. A.

* 4. Work in Progress

4.1 Real-Data Experiment

An effort to collect real data with which to test and compare our methods for radar imaging

has been initiated in collaboration with the McDonnell-Douglas Company in St. Louis. A

sphere having a diameter of one meter and a rough surface was placed on a rotating pedestal

in a compact radar test-range, and data were collected at several values of signal-to-noise ratio.

This object was selected because of its simplicity and the fact that its scattering function can

be predicted analytically, thereby providing a test object having known characteristics with

which to compare results. These data have only recently been acquired and have not yet been

* processed.

7
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4.2 Graduate-Student Theses

1 4.2.1 Pierre Moulin

Pierre Moulin is presently writing his doctoral dissertation on the subject of estimation

methods for forming images of diffuse radar targets. It is anticipated that this thesis will

be completed in May 1990.

4.2.2 Kenneth Krause

* Kenneth Krause is presently pursuing research for his doctoral dissertation on the

subject of forming images of specular radar targets. A goal is to develop a method that

accommodates both diffuse and specular components in the radar echo. It is anticipated

that this thesis will be completed in 1991.

1 4.2.3 Steven Jacobs

Steven Jacobs is presently writing his master's dissertation on the subject of compu-

I tational issues associated with forming radar images using the estimation methods we have

developed. It is anticipated that this thesis will be completed by August 1990.

5. Personnel

3 The personnel who participated in this research project during the reporting period are the

following.

Steven Jacobs
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory

- M. Sc. candidate in the Department of Electrical Engineering

- received no support under the O.N.R. Contract

-task: examine computational issues in radar imaging and develop parallel implementation
strategies

I
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Kenneth Krause
*-Part-Time Graduate Assistant in the Electronic Systems and Signals Research Laboratory

- Employed by the McDonnell-Douglas Astronautics Co.

-Ph. D. Candidate in the Department of Electrical Engineering

- received no support under the O.N.R. Contract

I - task: include specular components in the maximum-likelihood method

Pierre A. Moulin
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory

- Ph. D. Candidate in the Department of Electrical Engineering

- received support as a Graduate Research Assistant under the O.N.R. Contract

- task: analyze performance of the maximum-likelihood method, include sieve and
signal-to-noise ratio constraints for regularization, examine computational issues to make
the method practical3 Joseph A. O'Sullivan

- Faculty Research Associate in the Electronic Systems and Signals Research Laboratory

S- Assistant Professor of Electrical Engineering

- received support as a Senior Research Associate under the O.N.R. Contract

S- task: participate in all aspects of the research project

Donald Porter
-Undergraduate Research Assistant in the Electronic Systems and Signals Research
Laboratory

- B.S.E.E. and B.S.C.S. degree candidate in the Electrical Engineering and Computer
Science Departments

3 received no support under the O.N.R. Contract

- task: implement conventional radar imaging algorithms, implement a computer sim-
ulation of radar echo data based on a given scattering function

I
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Donald L. Snyder

Principal Investigator

* Director of the Electronic Systems and Signals Research Laboratory

* -Professor of Electrical Engineering

- received support under the O.N.R. Contract

task: participate in all aspects of the research project

Michael Turmon
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory

- M. Sc. candidate in the Department of Electrical Engineering

- received no support under the O.N.R. Contract

- task: study implementation of spectrum-estimation methods of use in radar imaging
on a massively parallel computer architecture (1024 element A.M.T. DAP with SUN/4
host)

J. Trent Wohlschlaeger
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory

- Ph. D. Candidate in the Department of Electrical Engineering

- r.,eived no support under the O.N.R. Contract during the reporting period

3 - task: study tomographic methods for forming radar images
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U 6.1 Reprint of: D. Snyder, J. O'Sullivan, and M. Miller, The Use of Maximum Likelihood

I Estimation for Forming Images of Diffuse Radar Targets from Delay-Doppler Data, IEEE
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* The Use of Maximum Likelihood
Estimation for Forming Images

I of Diffuse Radar Targets from
* Delay-Doppler Data

DONALD L. SNYDER, FELLOW, IEEE, JOSEPH A. O'SULLIVAN, MEMBCR, IEEE,
AND MICHAEL I. MILLER

Abstract -A new approach to high-resolution radar imaging is pre- transmitted energy, and sr(t) is normalized to unit energy.
sented. The starting point is a model of the radar echo signal based on the The particular form of this signal will not need to be
physics governing radar reflections. This model has been used several specified. The expressions we obtain for producing anI times in the past for describing radar targets that are rough compared to e
the wavelength of the transmitted radiation. Without specifying pecisely .image can then be specialized for any signal of choice,
what the transmitted signal is, a general estimation-based procedure is including the stepped-frequency and wide-band chirp
derived for obtaining images. Alter discretizing the model, the radar waveforms used in practice, as discussed by Wehner [1]
imaging problem reduces to the task of estimating discretized second-order and Mensa [21 and the chirp-rate modulated waveforms
statistics of the reflectance process of the target. Maximum lkelhood discussed by Bernfeld [3] and Snyder et al. [4].' When
estimates of these statistics are obtained as the limit point of an expects- specializing T(), it should be kept in mind that thistion-maximization algorithm. $ei g ~) tsol ekp nmn htti
I arepresents the entire sequence of transmitted pulses that

I. INTRODUCTION illuminate the target.
Walker [5] gives a clear intuitive description of the radar

ADAR SYSTEMS can be used to produce high-reso- imaging problem. He considers a small nonfluctuating
I lution images of a reflecting target. This is accom- reflector rotating counterclockwise at the rate of f, revolu-
plished by illuminating the target with a series of pulses tions per second on a circle of radius r centered at a
and observing the return echoes. Each patch on the target distance Ro from the radar transmitter/receiver, as shown
introduces a certain amount of propagation delay and in Fig. 1. The distance to the reflector at time t is given
Doppler shift to a pulse it reflects, the amount depending
on the range and velocity of the patch relative to the radar y. cross range

transmitter and receiver. The beamwidth of the radar 4
antenna relative to the size of the target is an important R(t) rlector
consideration. Images can be produced by scanning a
narrowly focused beam over the target in some type of - 0 \ x. range- raster pattern and then displaying the received power in RADARI

delay and Doppler or, equivalently, range and cross-range I T

coordinates. Images can also be formed by illuminating the Fig. 1. Geometry for small reflector.I entire target in spotlight mode with a wide, relatively
unfocused beam. The received signal for each illumination
is then a complicated superposition of the echoes received approximately by
from all the patches that make up the extended surface of R(t) z6 R o + xcos(21rf,.t)+ yosin(2irft),I the radar target. Our concern will be with forming images provided Ro zw r = (x 2 + yo2) 1/ 2, where (x0 , Yo) is the
of rotating rough targets using a spotlight-mode radar. (x, y) position of the reflector at time t = 0. Then the

We will denote the complex envelope of the signal radar echo signal st(t) received following an illumination
transmitted by the radar by (2Er)"/2sr(t), where Er is the by the transmitted signal will be of the form

Manuscript received June 9. 1987: revised April 1. 1988. This work was sR(t) - WEs 7 (t-r)b

supported by the Office of Naval Research under Contract N00014-86- where r = 2R(t)/c is the two-way propagation delay to
K0370. The material in this paper was partially presented at the 1988
Conference on Information Sciences and Systems. Princeton University.
Princeton. NJ. March 1988. 'Note added in proof: It has come to our attention since submitting this

The authors are with the Department of Electrical Engineering, Box manuscript that chirp-rate modulation is also discussed by E. Feig and A.
1127. Washington University, St. Louis, MO 63130. Grtlnbaum in, "Tomographic methods in range-Doppler radar," Inverse

IEEE Log Number 8928182. Probelms,. vol. 2. pp. 185-195, 1986.

0018-9448/89/0500-053601.00 ©1989 IEEE
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I SNYDER et al.: FORMING IMAGES OF DIFFUSE RADAR TARGETS 537

I the reflector, with c being the propagation velocity. The spectral density of this process. These may be regarded as
quantity b is a complex-valued scale factor which models conditional first- and second-order statistics of the reflec-
the strength of the received echo. This scale factor will be tivity process, respectively, in terms of the radar data (2).
called the reflectivity. It includes the effects of inverse If b(t, 'r) is deterministic, define c(f, ") to be its FourierI square-law attenuation experienced by the propagating transform in the t variable,
radiation and, importantly, the properties of the reflector
that are significant in the electromagnetic scattering inter- c(f,'r) =f b( t, T)e (4)

I action, including its shape, size, and surface properties.
More generally, the reflectivity can vary with time because The function c(f, r) then contains information about the
the aspect, and therefore, the scattering interaction with target in delay r and Doppler f coordinates. An image of
the reflector will vary as it rotates. If, as discussed by the target is obtained by placing the magnitude or squared
Walker [5], the radar data st(t) are examined over a small magnitude of this function into delay and Doppler bins.
interval of time, then the delay i and Doppler shift fD can We refer to this as the reflectance image. This transform
be approximated by can be obtained in a variety of ways, depending on the

signal st(t) selected to illuminate the target. For theS2c-(R 0 + x0) stepped-frequency signals used in practice, the usual ap-
and proach consists of two operations described by Wehner [1].

2 dR 2 The first is to place the data into delay (or range) bins byIo = f py o21rf, separately Fourier transforming N sample values of the
received signal acquired for each transmitted group of N

where X is the wavelength at the carrier frequency of the stepped-frequency pulses. The resulting delay-binned dataI radar. Thus the reflectivity b, range x0, and cross-range Yo, are placed in the rows of an N x N matrix where each row
relative to the coordinate axis, can be determined from the contains the transformed data from one pulse group. In
amplitude, delay, and Doppler information contained in the second operation, the columns of this matrix areH the radar data. Extracting this information permits the Fourier transformed to obtain a Doppler (or cross-range)
formation of an image of the reflector by displaying IbI or profile at each delay. The resulting two-dimensional array
lb12 at the appropriate location in range and cross-range is intended to be a discrete version of c(f. r) in delayI coordinates. The maximum delay and Doppler shift are (range) and Doppler (cross-range) coordinates. This pro-
determined by the distance (xo + yo)'/ 2 of the reflector cessing based on two-dimensional Fourier transforms is
from the coordinate center about which it rotates and the derived using a strictly deterministic analysis and so does
rotation rate f,; more generally, the extent of a reflector in not account for statistical properties of the reflectance

* delay and Doppler is determined by the physical extent of process or for noise that may be present. A similar process-
the reflector and the rotation rate. ing is employed for the linear FM-chirp signals also used

Now consider a spatially extended target that is rotating. in practice for radar imaging [1), [2].I A patch on the surface with a two-way delay in the interval For situations in which the target's surface is rough
[1r, r + Ar) reflects a signal that is incident on the patch at compared to the wavelength at the carrier frequency, b(t, T)

time t with a reflectance strength b(t, r) Ar. Consequently, may be taken to be a complex-valued Gaussian random
the complex envelope of the received echo signal sR(t) process, as discussed by Shapiro et al. [61 for radar systems
following the illumination of the target by st(t) is given by operating at laser frequencies and Van Trees [71 at mi-
the following superposition of returns from reflecting crowave frequencies. If there are no glint or specular
patches at all the two-way delays r: components in the echo, then this is a zero mean process

I (J , ( 1 with covariance
s Wt)= 2 -- 2 -r,'r dr. (1) E[b(t, r)b*(t',r')] K(t -t','r) 8(r- r'). (5)

The total received signal r(t) is also assumed to be cor- The delta function in this expression results from postulat-
rupted by an independent additive noise ing that each reflecting patch introduces an uncorrelated

r(t) = sR(t) + w(t) (2) contribution to the echo signal. That the function
K(t - t', ,r) depends only on the difference of t and t', and

where w(t) is a complex-valued white Gaussian process not on t and t' separately, results from postulating that
with a mean of zero and a covariance function defined by the reflectance process is wide-sense stationary for each

E[w(t)w*(t')] = NOS(t - 1') (3) delay. A reflectance process with these properties is said
* by Van Trees [7] to possess wide-sense stationary uncorre-

where the asterisk denotes complex conjugation. We refer lated scatterers (WSSUS). Assuming that the reflectance
to b(t, r) as the reflectance process. This is a complex-val- process has these properties, the delay-Doppler data asso-
ued random process. iated with the radar target may be obtained from the

There are two images that may be displayed as the result Fer tra r tr in the
of processing r(t) with an estimation procedure. One is an Fourier transform of K(t,r) in the t variable,

estimate of the reflectance process b(t, r) itself, and the S( f, r) f K(t, T) exp( - j21rft) dt. (6)I other is an estimate of the covariance or, equivalently, the -0

- 12 -
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I The function S(f, T) is called the scattering function of appears to be very hard to solve analytically. As a conse-
the target and, as a function of f, is the power-density quence, we reformulate the imaging problem using the
spectrum of the reflectance process. at each delay r. concept of incomplete-complete data spaces and then use
S(f .r) AfAr is the mean-square strength (or power) of the the expectation-maximization algorithm of Dempster et at.
reflectance of all patches on the target having a Doppler [20] to derive an iterative algorithm for producing the
shift in the interval [f, f + Af) and a delay in the interval maximum likelihood estimate of the scattering function.
[r, r + IT). The scattering function may be viewed in delay The technique we use to accomplish this parallels thatH and Doppler coordinates as an image of the target. We call described by Miller and Snyder [21] for power-spectrum
this the scattering function image. estimation and extends their work to include indirect inca-

Our approach to forming radar images will be to use surements of the process whose spectrum is sought; theI maximum likelihood methods with the data model in (2) to process is now measured following the linear transforma-
estimate the scattering function. We will also obtain an tion and additive noise seen in (2). As shown by Turmon
estimate of the reflectance process. Model-based ap- and Miller [221, this is a high-resolution approach to spec-
proaches that use statistical estimation theory techniques trum estimation which results in estimated spectra with
to derive image-formation algorithms appear less fre- smaller bias and mean-square error than other recently
quently in the literature about radar imaging than the developed approaches discussed in the literature. We ex-
deterministic approaches outlined above. One example is pect that similar improvements will be seen in radar im-E that of Frost et al. [8], who uses a multiplicative model and ages of scintillating, diffuse targets when this new tech-
Wiener filtering techniques. The approach we will describe nique is used.
differs in that the model (2) we adopt of the echo signal isI more complicated than a simple multiplicative one and II. MAximum LIKELIHOOD IMAGING FOR TH
depends explicitly on the transmitted waveform through a INCOmPLETE DATA MODEL
spatial integration over the reflecting target. We also do For reasons that will become evident in the next section,
not restrict the processing to be linear; in particular, wewe term the data r(t) in (2) the incomplete data for the
show that the processing of the received data for produc- radar-imaging problem. The model given in the Introduc-ing the maximum likelihood estimate of the scattering tion for these data consists of the sum of the radar echo
function and a corresponding estimate of the reflectance signal sR(t) of (1) and an independent white noise process
process is not linear. An approach for estimating scattering w(t). We may, therefore, state the problem of imaging a
functions of spread channels is given by Gaarder [9], who diffuse radar target as that of estimating the scattering
cites earlier work on the subject by Green [10], Kailath function S(f, r) or equivalently, the covariance function

I [1l], Gallager [12], Hagfors [131, [14], Price [15], Levin [16], K(t,r) given radar-retur data {r(t), T,<t<T} on an
Abraham [171, Sifford [181, and Reiffen [19]. Gaarder observation interval (T, T). In this section, we first dis-
assumes a specific processing architecture in the form of a cretize the model for the incomplete data and then derive
cascade ofa linearfiltersquare-law envelope detector and and discuss a necessary condition, called the trace condi-anothertion, which the maximum likelihood estimate of the dis-
either more general than or equivalent to those of most vion of the m )xmu s sti

previous authors. Our approach differs in that no particu- cretized version of K(t, r) must satisfy.

lar processing is assumed in advance; rather, we derive the Discrete Model
processing to produce the estimates, starting from a model
for the received data and applying recent results in maxi- In anticipation of using discrete-time processing of radarI mum likelihood estimation. The processing which results is data to produce images, we now state the discrete version
quite distinct from that discussed by Gaarder. of our model as follows. We are given N samples of the

For our new approach to radar imaging, we adopt the complex-valued radar data corresponding to (2),
WSSUS model of a diffuse radar target described by r(n)-s,(n)+w(n) ,  n-0,1,... N-1 (7)
Shapiro et al. [6] and Van Trees [7]. We treat both the
reflectance process and its second-order statistic, the scat- where w(n) is a white Gaussian sequence with zero mean
tering function, as unknown quantities. The iterative ap- and covariance
proach we develop for forming images yields the maxi- E[w(n)w(n')] -NO.. (8)
mum-likelihood estimate of the scattering function and,
simultaneously, the conditional-mean estimate of the re- where 8.,, is the Kronecker delta function, and the signalI flectance process based on statistics which are consistent samples corresponding to (1) are given by
with the estimated scattering function. Thus both of the + *
quantities treated separately in other imaging schemes are s(n) - 2r E sT(n, i)b(n, i),
produced simultaneously with our new approach, which is ,, - .0
a unique and important aspect of our approach. n i,0, V -1. (9)

We will develop a necessary condition, called the trace
condition, which the maximum likelihood estimate of the In this expression, we define sT(n, i) and b(n, i) in termsI target's scattering function must satisfy. This equation of the transmitted signal and the reflectance process, re-

- 14 -
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spectively, according to where the N-dimensional vectors sR and w are given by

SR(O) (W (O)
sr(.. i) = ST(. At - i AT) (10) SR " j W(I W(I) (5

and 1 SR(N-1) w(N-1)

2 /1 Also, define S* as the NIRx N rectangular matrix ex-
pressed in column-block form in terms of IR separate
N x N matrices according to

where At and A are the sampling intervals adopted in the

discretization in time and delay, respectively. We assume So
that the target has a finite extent in range; thus b(n, i) and S(
therefore terms forming the sum in (9) are zero for i S*= (16)

i outside the IR (here, the subscript R denotes range) values St -t
M, M + 1,. ., m + I'R - 1 starting from the minimum two-
way delay corresponding to m. This discrete reflectance is where Sj is an N x N diagonal matrix containing sample

a Gaussian sequence with zero mean and covariance given values of the complex envelope of the transmitted signal
I s-t(t),

s(0, m + ) 0 0 0
0 sr(1,m+j) 0 0

s 0 0 0 (17)

0 0 s(N-1,m+)

Further, define the reflectance vector b of dimension NIR
by in the column-block form of IR vectors according to

E [b(n, i)b*(n',i')] = K(n - n', i) 8,,.. (12) b(O)

I The discrete scattering function S(v, i) is the Fourier b(1) (18)

transform of K(n, i) in the n variable, b( 1)

S(o,i)= E, K(n,i)exp(-j2lvn). (13) where each b(i) is a vector of dimension N,
S-- , ( ( b(O,m+i)

I The imaging problem for the discrete model is to estimate b(i) b(1, m + i) (19)
S(v, i) or, equivalently, the covariance function K(n, i),i for all frequencies o spanning the target in Doppler, and b(N-1, m + i)
for all delays i spanning the target in the delay, given the Using (9) and these definitions, we can now express the
radar data {r(n), n - 0,1,- -", N-l}. N-dimensional signal vector sR of (14) and (15) as

I Matrix Model s. - 2 Er S + b (20)

These discrete equations may conveniently be written in where a superscript plus sign denotes the Hermitian-trans-

matrix form as follows. Define r to be the received-signal pose operation. In terms of these defined matrices, the
vector of dimension N, received vector has zero mean and covariance

(0) K,- E (r," + E(sRs ) + E ( )w

r(1) - 2ErS E(bb )S + NI. (21)I - sR + w (14) Then, since

r(N- 1) E(b(i)b+ (j)) - K(i) 8,., (22)
I_ where K(i) is the Hermitian-symmetric Toeplitz matrix

K(O,m+i) K*(l,m+i) ... K'(N-1,m+i)

K(i)- K(1, m+i) K(O,m+i) ... (23)

K(N-1,m+i) ... K(O,m+i)
15 -
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it follows from (21) that the covarance K, of r is given by method of statistics, which selects K to maximize the

K, = 2ETS+KS + N01 (24) incomplete data log likelihood

where K is the block-diagonal NIR X NJR-dimensional ma- Lid(K) = -ln(det (2ETS+KS + 2 0 ))
I trix defined by -r (2ETS KS + N I ) -r (26)

K(0) 0 0 ... 0

K = 0 K() 0 ... 0(25) where the maximization is subject to the constraint that K
be an admissible matrix.

0 0 0 ... K(I s - 1) Lemma 1: A necessary condition for an admissible K

in the interior of 0 to be a local maximum of Li(K) over
The ith diagonal block K(i) of K is the covariance matrix all K 6 tl is

I of the reflectance process at the ith delay bin. tr((2ErS+ KS+ +N 0 )'(-I( 2 ErS 4KS NVo)

The Estimation Problem (2ErS KS+NoI)'S S K S ) =O  (27)

I We will use the following definition.
Definition: Let K denote the set of all NIR X NIR for all admissible variations 8K.

block-diagonal matrices (25) with each block K(i) an The proof of Lemma 1 in the Appendix is based on the
I N x N Hermitian-symmetric Topelitz matrix (23). Let 0l C . fact that the necessary condition for an admissible K to

K be a specified convex subset of K. Any matrix K 6 0l is maximize Lid(K) is that, for all admissible variations 8K,
termed admissible. A variational matrix 8K C K is called

* an admissible variation of K for a fixed KG61 if there Lid(K+a8K)-Lid(K)
existsana>Osuchthat K+P SK e2 forallfsatisfying lir <0. (28)
- al.0 a0 <8 <a.

The problem is to form an admissible estimate of the We call (27) the trace condition. Burg et al. [23] have
covariance matrix K of (25) given the data vector r of (14). studied an equivalent problem of Toeplitz-constrained
The radar image then viewed is the discrete scattering covariance estimation and have derived the trace condition
function, an estimate of which may be obtained from the using a different approach.

* estimate of K by use of (13). If il = K, there are NIR unknowns in K. Since 8K e K,
In the foregoing definition the constraint that K be in 9 there are NIR parameters in 8K that can be varied for this

is used to obtain a "reasonable" setup of the problem. case. These variations in the trace condition generate NIR
I Here we assume that the scattering function S(f, i) in (6) equations in the unknown elements of K. Thus, in princi-

is only nonzero for frequencies f satisfying Ifl f. for pie, the trace condition produces enough equations to
some finite upper frequency f. and for all delays i. This determine the unconstrained maximum likelihood estimate
is equivalent to the assumption of a target of finite cross K. However. the equations are complicated due to the

I section and rotation rate. The discrete-time scattering inverse matrices appearing in (27); thus it does not appear
function S(v, i) of (13) is then a periodic function of v feasible to determine K directly from the trace condition.
consisting of a sum of shifted replicas of S(f, r) scaled in This motivates the development of the iterative approach

I amplitude by 1/At and in frequency by At, where At is the presented in the next section. A sequence of estimates that
time between samples of r(t). The replicas of S(f, ,') are increase the likelihood at each iteration stage is identified,
centered at every integer on the v scale. To guarantee that and we demonstrate that stable points of the iteration
there is no aliasing, assume that the sample rate 1/At of satisfy the trace condition.
r(t) satisfies the Nyquist condition 1/At > 2f... Then The trace condition is only a necessary condition that
S(v, i) will be nonzero between - 1/2 and + 1/2 only for the estimate K must satisfy. For it to be sufficient as well.
v satisfying IvI s v,= - f= At. The output of our algo- the second derivative must be negative along all admissible
rithm is S(v, i) discretized in frequency v. For a resolution variational directions 8K.
having at least Ict (here, the subscript CR denotes cross Lemma 2: Sufficient conditions for an admissible ma-
range) samples in the frequency range - v_ < v .u., a trix K in the interior of 11 to be a local maximum of

I total of Lid(K) are that, first, the trace condition (27) is satisfied

P lcit for all admissible variations 8K and. second, that

2Atf, tr ( K- S 8KSK (2ErS-KS

I samples of v between -1/2 and +1/2 are required. + N 0 1-2rr' )K-S8KS) <0 (29)
The model of the incomplete data r of (14) is that r is

normally distributed with zero mean and covariance speci- for all admissible variations 8K.
fied in (24). Given the incomplete data, we wish to esti- The proof of Lemma 2 is given in the Appendix. Equa-

mate the covariance K of the reflectance process. as de- tion (29) is just the second derivative of Lid(K) in the

fined in (25). To do this, we adopt the maximum likelihood direction 8K.

I -16 -
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III. MAXIMUM LIKELIHOOD IMAGING FOR THE matrices that have the maximum likelihood estimate of K
INCOMPLETE/COMPLET DATA MODEL subject to this circulant extension as a stable point. The

The fact that the trace condition (27) cannot be solved approach parallels that of Miller and Snyder [211 for
dieact th the ramumikelhoodetimante o e estimating the power spectrum of a time series from a* directly for the maximum likelihood estimate of K moti- single set of data. An important benefit of introducing the

yates the indirect approach we now take of embedding the periodic extension and using the expectation-maximization
imaging problem in a larger, seemingly more difficult algorithm is that estimates of both the scattering function

problem. The result will be an iterative algorithm which, and the reflectance processes are obtained simultaneouslywhen implemented, produces a sequence of admissible and can be readily viewed as target images in range and
matice K(), (1)•.. Kt), •• •wit th prpery tatcross-range coordinates; thus the procedure proposed may

the corresponding sequence of incomplete data log likeli- be considered natural for the imaging problem because

* hoods Lid[K(0 )], Lid[K(1 )], . . , Lid[K(k)1,. . . is nonde- b e considered epa in te pase

creasing at each stage. both types of images considered separately in the past are

Fuhrmann and Miller [241 have recently shown that obtained directly. As a final comment regarding our use of

maximum likelihood estimates of Toeplitz-constrained co- a circulant extension for K, we note that in estimating a

variances which are positive definite do not always exist discretized version of the target's scattering function, the
vwrinc hin ony osiie davectr ro n ay et class of admissible K is restricted automatically to consistwhen given only one data vector r. A necessary and of those with circulant extensions. For completeness, wesufficient condition for the likelihood function to be un- also include in the Appendix the equations obtained using

I ate to e, and therefore for no maximum l elihood esti the expectation-maximization algorithm for estimating
mth thexist, is that there bea singular Toepi tz matrix general Toeplitz matrices when the assumption of a circu-
with the data in its range space. For our imaging problem, lant extension is not made.
this condition is that an admissible K exists with We shall introduce a modification of our notation to

2ErS kS + NoI indicate that the N samples of the reflectance process are

singular so that from a stationary periodic process of period P. To this end

r = (2ErS KS + N0 1)a (30) let b (i) denote the N-dimensional vector b(i) of (19). We
now think of bN(i) as an N-dimensional subvector of the

for some complex-valued vector a. In fact, with only a P-dimensional vector b.(i) formed from samples of theI Toeplitz constraint on K, a sufficient condition that a reflectance process over a full period.
singular estimate for K be obtained is that No = 0 and that
a singular K exist with r in the range space of 2ETS'KS. b(0, m + i)
The argument for this mirrors that of Fuhrmann and b(1, m + i)

* Miller in [24, theorem 1] but is applied to the complete
data log likelihood given in (A7) of the Appendix. bp(i)= b(N-l,m+i) (31)
Fuhrmann and Miller also showed that, even if the true

I covariance had eigenvaues bounded from above and be-
low, the probability that a singular Toeplitz matrix exists b( P - 1, m + i)
with the data in its range can be very close to one. By If lN is the N x N identity matrix, and JR the P x N

i restricting the search to Toeplitz matrices with circulant matrix defined by
extensions, they were able to show that the probability a
singular circulant Toeplitz matrix has the data in its range J = .v(32)
space is zero. Thus, for maximum likelihood estimates to
be nonsingular with probability one for all nonnegative then
values of N0 , W;e may restrict the class of admissible
Toeplitz matrices to be those with circulant extensions of bN (i) = J; bp(i).

* period P, where P is equal to or greater than the number Also, let b, denote the NI-dimensional vector b of (18),
N of data samples available P > N. This is not a severe and bp the Pl-dimensional vector with i th block element
restriction because the set of all Toeplitz matrices is ap- b,(i). Then,I proached by the subset having circulant extensions of by -M+ bp
period P as P tends to infinity. What we envision in
adopting this constraint is that for each delay i, the N where MR is the P1R x NIR block-diagonal matrix
Sample values ofthe reflectance b(n, i), n -0,l1, - , N -l 1. JR 0 Qare from a stationary process that is periodic with period
P, where P could be some large but finite value; a lower MR = 0 i 0 0 (33)
bound on P in terms of a desired cross-range resolution is

* discussed above. These N sample values of the reflectance 0 0 0
enter the incomplete data r according to (14) and (20). By Furthermore, let K.,(i) denote the N x N Toeplitz covari-
using the expectation-maximization algorithm of Dempster ance matrix K(i) of by(i) defined in (23), and K,,(i) theI et al. [201, we shall develop a sequence of admissible P X P circulant covariance matrix of bp(i). Then, the

- 11 -
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Toeplitz matrix KN(i) is the upper left block of the Substituting (37) into (39), we get
circulant matrix K p(i), as given by F WKp(i) e - FP A (i) We, (40)

KN(i) = JR'*Kp(i)J. but P/ 2 We is a P-dimensional vector of ones, and there-

Lastly, let KP denote the PI, x PIR block-diagonal matrix fore
in the form of (25) with the ith diagonal block being
Kp(i). Then, if KN denotes the NIR X NIR matrix K of S(-P, ,= (i), (41)
(25),

KN MtKpMR. which, according to the above definition, is the (p + iP)th
diagonal element of the diagonal matrix Ap,. The entries ofLet W denote the P x P discrete Fourier-transform ma- the diagonal matrix Ap in (37) are then samples of the

trix scaled so that the columns are orthonormal, scattering function.
I o A The constraint from Section II that the scattering func-

SWp W. w tion S(o,.i) be nonzero only for IJvIf t=,,Attevn, for

w= w° 0 2k values of v between -1/2 and +1/2, may be incorpo-

77 w , W(4 rated at this point in the development. Since A,. is a

diagonal matrix of samples of the scattering function, wew°O w -t  W~P( t r  restrict A , to have nonzero values only in its top left and

I where wp = exp( - j2 w/P). Also, let Wp be the PIR X P1R bottom right corners. More precisely, let !cR be the small-

block-diagonal matrix est odd integer satisfying

W 0 I0 O> 2 v= P.1 0W 0 (35) IcR is the number of cross-range resolution cells implied
by P and v.. Then, let JcR be the IcR x P matrix0 0 0

* Then, bp. can be represented in rotated coordinates accord- J,m( 0

* ing to \ 0 0 12/
a (0) where 1, is an I¢ + 1)/2] x (IcR + 1)/21 identity matrix

a ~and 12 is an [( ICR- 1)/21 X[ ICR - 1)/21 identity matrix.

ap = Wpbp = (36) Let MCR be the IcRaI X PIR matrix

a(l.c)  (JCR 0 0 0
*(I-)MCR 0 JCR 0 0

U where a(i) = "p,(i). The assumption that bp.(i) origi-(
nates from a periodic process implies that the PIR-dimen- 0 0 0 JCR
sional vector ap is normally distributed with zero mean Define 2.p to be the diagonal matrix
and diagonalized covariance

Ap = E( apa; ) = WpKpWp,. (37) =Mxp&

I We will denote the (p + iP)th diagonal element of A p by The diagonal elements of 7.p are the potentially nonzero

a,2 (i); this is the pth diagonal element of the P× P diagonal elements of A,. Recognizing that some elements

diagonal matrix E(a(i)a*(i)J. of the diagonal matrix Ap are zero and using the defini-

* Let S(v, i) be discretized in frequency with P samples tion of McR, we conclude also that

taken for 0 v < 1. These samples may be obtained from Ap = MCR7-PfCR.
(13) as The set 02 referred to in the definition in Section II can

P-  K ( - nP (38) nowbespecified. Werestrictconsideration to those covari-
P ) n-0 P ance matrices generated by X, from above, so

for p - 0,1,.. P - 1. The pth such sample is just the pth - (K e K:K - Mt WPMCRZ.MCRWPMR }.

entry in the vector For use with the expectation-maximization algorithm,

vFWKp(i)e (39) we identify the complete data as (cp, w), where w is the
m where e is the P-dimensional unit vector N-dimensional noise vector defined in (15) and cp is

defined by

1 C,. - Mm a,.

e 0 Since elements of a1, corresponding to the zero diagonal
elements of Ap are almost surely zero, we see also that

0 a p,- Mac,..1 - 18-
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3 Using this fact, we note from (14) and (20) that the Since Lrd in (43) is a function of the nonrandom matrix
incomplete data r can be obtained from the complete data YE, the result of this conditional expectation is a function
according to the mapping of -. It is also a function of Z") because the expectation

* r = + (42) is performed assuming that c, is normally distributed with
covariance VK ). We have indicated this dependency of the

where we define the IR'CR X N matrix (which appears conditional expectation on both 1,, and """ in the defini-
throughout the development that follows): tion of the function Q in (44). From (43). we have that

3 r=F-EMCRWPMRS ' lo R -I IF~~ ~ -2 2F.cR MS E E-n(o,(;))
The log likelihood function Lcd(lp) of the complete data [= o P no

I as a function of Mp, the diagonal covariance matrix of cp, -1 tc -1
is given by - E[Ic() , ]o (i).

Lcd(XP) = -ln(det(7p))- cXy-cp i-o p- 0

= -2 . E ln(a,(i)) The M-step yields the estimate Z'" 1 at stage k +1 as the
i-o P-0 choice of E¢ that maximizes this conditional expectation.

IN - I lot - 1__(+=aga[(' zk

c (i) 2 00;2(i) (43) +i)arg max [Q( ,))]. (46)
-0 . P-0 subject to the constraint that the maximizer be a diagonal

where all terms that are not a function of 1. have been covariance matrix. From (45), this maximization yields the

suppressed and c(i) is the pth element of the IcR-dimen- diagonal matrix I) with (p + ilcR)th diagonal element

sional vector cp(i) - JcRa(i). ( (i) )(k +1)E[lc(i)I2Irk)] (47)
The expectation-maximization algorithm for estimating

the covariance of the reflectance process Kp from the Thus, we may write . ) as

incomplete data r is an alternating maximization proce- d

dure in which a sequence of estimates V0), = k P
2(k),.., of 7p is obtained first, where the expectation- where the d over the equal sign means that the diagonal
maximization procedure specifies how to obtain V "h') terms in the matrix on the left side equal the diagonal
from VI) for k = 0,1,-... If V p) denotes the estimate of terms in the matrix on the right side and that all the off
Y X. at stage k, then there is a corresponding term diagonal elements on the left side are zero.

K (k Expression (48) appears to be complicated because of
K Wk) R 74k) MCRWP the several matrices we have defined, but it produces a

in a sequence of estimates of Kp. Likewise, to the k th term sequence of covariance estimates having a straightforward
I Kpk) of the sequence of estimates of Kp, there is a corre- interpretation. If we form the matrix K, -) according to

sponding term (k 1 ) = W; MIV .29
K k MR+K (MR -P CR ca'+p'CRP ~ (49)u we then find that

Kk+1)(0) 0 0 0

K (k+l) 0 KkAi)(1) 0 (50)

0I0 o K i"(In-1)

I in a sequence of estimates of KN. These have increasing where Kk+i)(i) is a P X P circulant matrix interpreted as
log likelihoods Lid[K())] < Lid[K )] .s Lid[K(k)] the estimate at stage k + I of the covariance K(i) of the
< •••We show that stable points of this sequence satisfy P-periodic reflectance process at delay m + i. Miller andI the necessary trace condition for the maximum likelihood Snyder [21] show that the (n, m)-element of this circulant
estimate of Km, where K0) is a stable point if K ' D - KfP matrix is given by
for j -1,2,....

Each iteration stage of the expectation-maximization P1 (k..: E[b(p,i)b*(Qp+ra-n)p,i)[rK * ] (51)
algorithm has an expectation E step and a maximization M - E
step that must be performed to get to the next step. The P-0

E-step requires evaluation of the conditional expectation where (a)p = a mod P. Equation (51) has an intuitively
of the complete data log likelihood (43) given the incom- wher If e r eutiont(5p)ohs n inculdibe
plete data r and assuming that the covariance defining the appealing form. If the reflectivity process b( n, i) could be
complete data is ZMk) observed for all instants n -0. 1.-, P - I in a period and

Q [for each i independently, then the maximum likelihood
Q[V ,k)] - E[LCd(XP,)r, )]. (44) estimate of the covariance Kp(i) would be the arithmetic

P -- 
19 -
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average of the lagged products m + i given by the Icrt diagonal elements of the ith IcR x
1 - ICR-dimensional diagonal block of Ep. We may, therefore,

- b(p,i)b*((p+m-n)v,i). (52) simply regard Z(') as the stage k estimate of the scattering
P P,-0 function. The stage-k scattering-function image of the

Equations (50) and (51) indicate that one should simply target in range (i coordinate) and cross range (p coordi-nae)cn be ordispae a ns folows t k( eoerdhe
substitute the conditional mean estimate of an unknown nate) can be displayed as follows. Let Y-c)(k) denote the
lagged product into this expression to form the maximum i th 'CR X ICR-dimensional diagonal block of P ), and
i kdenote the pth diagonal element of 2(k)(i) by s(p,i)=likelihood estimate of the covariance when only the incom- [ 1(i)](k) for p 0,1 .. -1 Phn (,i sds

plete data are known. [ = , ICR-1. Then, s(0,i) is dis-
played at range m + i and cross range corresponding to a

U Estimating Zp and Kp Doppler shift of zero; s(1, i) and S(ICR- 1, i) are dis-
played at range m + i and cross range corresponding to a

The maximum likelihood estimate of X-p is a stable Doppler shift of v = 1/P and v = - 1/P, respectively;
point of the sequence defined in (48). The terms on the s(2,i) and slCR -2, i) are displayed at range m + i and
right side of this equation can be evaluated as follows. Let cross range corresponding to a Doppler shift of v = 2/P
the conditional-mean estimate of cp in terms of the incom- and v = - 2/P, respectively; and so forth, with s( p, i) and
plete data r be defined at stage k by s(CR -p, i) displayed at range m + i and cross range

= Efcr, k) (53) corresponding to a Doppler shift of ± p/P for p--
LP~• 12,...,'(lc- 1 )/ 2 when 'CRt is odd.

Then, (48) can be rewritten in the form

S '(k +1) 
d= E[(ck- )(C, -(kk)+(r, ekk ("k + Forming the Reflectance-Process Image

S E( p PIr, (54) It is interesting to note that the k th stage conditional-

mean estimate of cp, given the measurements r and assum-
I Now examination of (42) shows that forming the condi- ing that the second-order statistics of reflectance are given

tional-mean estimate (53) of cp from r is a standard by the k th stage estimate of the scattering function, is used
problem in linear estimation theory. From Tretter [25, ch. to form the estimate of , at stage k +1 when the
141, for example, we find that expectation-maximization algorithm is used. This estimate

6(k) = t is of very much interest in its own right because, from (36)
p [ " F NoI r. (55) and its definition, the IcR elements of cp(i) are the poten-

Furthermore, the first term on the right side in (54) is the tially nonzero Fourier-transform coefficients of the re-
I covariance of the estimation error when c, is estimated flectance process bp(i). The target's reflectance image at

from r. Also from Tretter (25, ch. 141, we have stage k is formed by placing these elements at range m + i

,c k,)(Cp _ k,)' +lr, (k)
1  and cross range in the same manner as described above for

Ej(cp- P P P the scattering-function image.

r , (56) Convergence Issues

In summary, the following steps are performed to pro-
duce a sequence XO, 1(1). J~

k
)
,  • of estimates of 2, There are some important properties of the iteration

fo which the corresponding sequence of likelihoods is sequence (48) which are worth mentioning. First, each stepnondhchhean cis in an improving direction in the sense that the log
nondecreasing: likelihood increases at every step and continues to do so

1) set k = 0, selecting a starting estimate V-2; until a stable point is reached. This is shown by writing
2) calculate the estimate of cp according to (55); (54) out as
3) calculate the error covariance according to (56); (k- (57)
4) update the estimate of Zp according to (54);

5) if "last iteration" then stop, else replace k by k + I where
and go to 2. e(k) . rK k)'-(rrk) - Kk))K k'- + (58)

U The starting value in step 1 can be any positive-definite and where
diagonal covariance matrix of dimension IRCR X lIcR. A k

sequence of estimates of Kp having increasing likelihood K,") = r +  (59)
I is obtained from the sequence of estimates of 2, accord- is the kth estimate of the covariance K. of r. Next, the

ing to (49). trace condition (27) which the maximum likelihood esti-

mate must satisfy is reexamined. From the assumption of' Forming the Scattering-Function Image the P-periodicity of the reflectance process and the matrix
From (41), the diagonal elements of the lRlCR X 'M'c- definitions given, the admissible variations 8K must be of

dimensional matrix Xp are sample values of the scattering the form

function, with the scattering function samples at delay 8K - M- W M d-8ZMcRWpMR. (60)

- 20 -
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Here 8O is a diagonal matrix of the same dimensions as 2. guess that will not be verified until some experiments are
The trace condition (27) then becomes completed. Some form of specialized processor to accom-
(2Er)- tr(K,-1(rr- - r-pr - N1) K-17- 82 r) = 0. plish each iteration stage efficiently will probably be needed

to produce images in practically useful times. One possible3 (61) approach is the following. The matrix product

Using the fact that tr(AB) = tr(BA) and evaluating this
trace at the k th iterate, we see that the trace on the left F- V'2 ErMcrWpMRS
side of (61) is equal to

(2 E)-ltr((k)X). (62) is required at each iteration stage and does not change.
This 1ICR X N-dimensional matrix can therefore be cor-

According to (57), 7.4) is changed at each stage by adding puted once off-line, stored, and then used as needed dur-
the diagonal elements of ing on-line computations. Then, at iteration stage k, the

(k) E)(k) (k)(63) following on-line computations can be performed:P P., (63

to Xk). Define 1) compute the N x N-dimensional matrix A definedby A - 7I k)F + Nol;
3(k) . X(k) )(k)Z,(k) (64) 2) compute the IR'CR x N-dimensional matrix B de-

h t ~ fined by B = !(r;3 as these diagonal elements. Then, evaluating the trace at cme BA -an e al nothi vriaio gies3) compute BA - 'r and the diagonal elements of Z k 1

this variation gives BA - 'B. .

tr(9(k)j(k)) I0. (65) The computations in 3) can be accomplished in about

This shows that the variation OX(k) is in an improving 4N + 'RICR -2 time steps using the systolic array de-
direction. Furthermore, we are guaranteed that the incom- scribed by Comon and Robert [26] augmented, as they
plete data log likelihood is nondecreasing as a result of the suggest, by one row to accomplish the postmultiplication
M-step of the expectation-maximization algorithm be- of BA - by r and by IR'CR rows to accomplish the
cause, at this step, the conditional expectation of the postmultiplication by B . The matrix multiplications in I
complete data log likelihood, given the incomplete data and 2 for determining A and B can also be performed
and the last iterate for Zp, is maximized over Zp. As rapidly on a systolic array. More study of implementation
shown in [20] and [21], this implies that the incomplete approaches is needed, but it does not appear that the
data log likelihood is nondecreasing. computational complexity of our new imaging algorithm

L Lemma 3: Assume that No > 0 and 1(0) is positive defi- needs to be a limitation to its practical use.
nite. Then 1) X7. is positive definite for all k; and 2) all The choice of N, I. and IcR is important for the
stable points satisfy the trace condition (27) for all admis- computations. These parameters are selected to achieve a
sible variations (60). desired range and cross-range resolution and are. there-

The proof of the first part of Lemma 3 is in the fore, problem dependent, but the same considerations used
Appendix. For the second part, since the diagonal ele- with other approaches to radar imaging can be used in
ments of V,,) are positive, (65) holds with equality if and selecting them. Choosing the product IRICR to be of the

* only if the diagonal elements of eO(k) are zero. Notice that order of N will, in some sense, make the imaging problem
if J7k*u = X, then the diagonal elements (64) are zero. well-defined because the number of unknown parameters
This implies that the diagonal elements of e tk) are zero IRIcR that need to be estimated to form the image is then

* and hence that comparable to the number of measurements N. On the

tr(e(k)S2) . 0 (66) other hand, the choice of P is unique to our approach. As
stated, we need P > N, but no upper limit is given. In [241.

for all diagonal 8X. Thus all stable points satisfy the trace it is shown that as P increases toward infinity, so does the
condition (27) for admissible variations. From (55), stable maximum value of the incomplete data log likelihood
points of the sequence 7-,) yield stable points of the function, with probability one. Thus P cannot be made
sequence of conditional-mean estimates of the reflectance arbitrarily large from a theoretical standpoint. Any com-

3 process. putation involving a matrix with one dimension equal to P
can be performed off-line.

Computational Considerations

I he computations required to produce radar images IV. CONCLUSIN

with our method are specified by (54)-(56). The number of The expressions we have obtained for forming images of
iterations of these equations required to produce an image diffuse, fluctuating radar targets are based on the modelI near the convergence point is presently unknown. Our stated in Section II. The target reflectance is assumed to
experience in using an iterative algorithm to produce maxi- introduce wide-sense-stationary uncorrelated scattering of
mum likelihood images for emission tomography suggests the transmitted signal with no glint or specular compo-

* that 50-100 iterations may be necessary, but this is only a nents present. The reflectance process is assumed to be a

21-
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U WSSUS Gaussian process with unknown second-order APPENDIX

statistics given by a delay-dependent covariance or scatter- Proof of Lmma I
ing function. Echoes of the transmitted signal are received
from all the reflecting patches that make up the target, From the definition of the log likelihood function in (26), we

I with each patcn introducing some propagation delay, have
Doppler shift, and random amplitude-scaling into the sig- 1
nal it reflects. The superposition of the echoes from all the - ( Lid( K + a8K) - Lid(K))

aI patches is received in additive noise. Thus the reflectance 1
process is only observed indirectly, following a linear su- .. r" ((K, + a2ErS 8KS) -' -' )

perposition and in additive noise; thus neither the re- a

flectance process nor its second-order statistics are known. I ln(det(K,+a2ErS 8KS)det(gt)) (Al)
Target images are made by displaying estimates of either a
the reflectance process or its second-order statistics where K, is the covariance of the incomplete data r as given in
(scattering function) based on processing the received sig- (26). Examining the frst term on the right, we have

* nal. In Section II, we derived the trace condition which the -
maximum likelihood estimate of the covariance of the -- r+ Ki((I+a2 ErS+KSK'T) -'-i)r

reflectance must satisfy, and we concluded that this condi- aI tion is too complicated to solve explicitly for the estimate. 1r+K,?i(a2ErS8KSKni)(I+a2ES-8KSKi)lr
This motivated the introduction in Section III of the a
incomplete-complete data model and the use of the expec- - r K 12ErS 8KSK; 1r + 0(a). (A2)
tation-maximization algorithm, which results in a sequenceI of estimates of the scattering function having increasing Examining the second Lerm on the right in (Al), we have

likelihood. A corresponding sequence of estimates of the 1
reflectance process is also obtained. al(det(!+a2ES SKSK7'))

* A number of issues have yet to be resolved for the 1
approach to radar imaging we have presented. One of the - - -ln(det(1 + aB))
most important is resolving how glint and specular compo- a

nents in the return echoes should be modeled and accom- 1In( + a tr B) + + a"det(B))
modated in the formation of the images. The selection of a
transmitted signals to produce good images is an impor- --- tr( B) + 0(a) (A3)
tant subject about which little study has been made. The
quality of target images obtained with our new approach is where B is defined in the first equality. For any K e 9 to be a
not known at present; to study this issue, we are presently local maximum, a small variation in K in an admissible direction

notknon a prsen; t stdy hisisse, e ae pesetly cannot increase Ld(K), or
implementing a computer simulation so that comparisons

to alternative processing strategies can be made. The equa- li 1 Li(K + a8K) - Ld K)) 0 (A)

tions we have developed are computationally demanding a 0' a
because the matrices involved can be of large dimension for all admissible variations 8K. If K is an interior point, then

I and the iteration must be performed repeatedly until a - 8K is also an admissible variation and (A4) becomes an
stable point is approached. It is therefore important to equality. Substituting (A2) and (A3), we get
determine the conditions under which our approach yields
radar images of sufficiently improved quality compared to r'K'22ErS* 8KSK7r - tr(2ErS 8KS K") 0, (AS)U existing approaches to warrant the development of special which is the trace condition (27).
processing architectures that will make it practical. The
computer simulations should be of some help in this. At Proof of Lemma 2

I this time, however, the only experimental results suggest-'ng the efficacy of our method are those reported in [21] Suppose that K satisfies (27) and (29) for all admissible
and (22] efficayofo si mat pw retsit spte in ] variations 8K. We now show that (29) is simply the secondand [221 for estimating power-density spectra in one di- derivative of Lid(K) in the direction 8K by taking the limitI mension.

lim tr((2ES K + 8K)S + NoI)'
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D Thus the conditions of Lemma 2 are the standard sufficient Proof of Lemma 3, Part I
conditions for a point K to be the local maximum of Lid(K). Assume that the initial guess Z111 for Ep is positive definite
Equation (27) says that the first derivative of Lid(K) is zero at and that No > 0. We will now show that, if , ' is positive
K. Equation (29) says that the second derivative is negative an thtN>0.W wilowswtaif! ispiiv
definite along admissible variations from K. A necessary condi- definite, then so is X, , and thus, by induction, Zr,! is
tion for K to be a relative maximum is that this last expression Positive definite for all k. One key to following this derivation is

evaluated at K to be equal to or less than zero for all admissible the matrix identityI variations 8K. Under the assumptions in Section IV, admissible B( I + AB)- = (I + BA) - 'B. (A12)
variations are given by (60). Substituting (60) into (A6) and
evaluating for all diagonal matrices 8Z gives the second-order This identity is used to rewrite (57) as
necessary condition.

- k'l)- H(7(k) + 2 l +3 Estimating a General Toeplitz Matrix

In Section IV, we derived a sequence of estimates for a 7 ( k

covariance matrix subject to the constraint that the estimates be P H
circulant Toeplitz matrices. For completeness, we develop and +( H2(k)rr)(r r ,¢')H'
discuss the equations for estimating a covariance matrix subject r F" ,H ]
to the weaker constraint that the estimates be general Toeplitz + N 2HElkPH- (A13)I matrices. Similar equations for other constraints on the Toeplitz where we have defined H according to
matrices are easily obtained by mimicking the steps in the main
body of this paper. H - N-v)  (A14)

Let the complete data be {b,w), and let b be normally H

distributed with zero mean and covariance K, as given in (27). Clearly, all the diagonal elements of (A13) are greater than or
The complete data log likelihood is equal to zero. To show that they are strictly positive, we look at

the last term and get that the ith diagonal element is
Ld(K ) - -ln(det(Kp)) - b.KT'bp (A7) tAtcI -

where all terms that are not a function of K, have been sup- ( P j 0 ( (

pressed. Maximizing this function gives the trace condition 1-0

tr( K-1( bb- -K) K-' 8K) -, (AB) VolJ E0 (H),1(Z(P1'))), (A15)

which the maximum likelihood estimate K must satisfy. Perform- which is clearly positive when XO> 0 since H is invertible and all
ing the E- and M-steps of the expectation-maximization algo- daoa lmnso k r oiie

diagonal elements of V)D" are positive.rithm yields the following iteration sequence for the elements

K(ni), n-0,1,. .,N-1, of the covariance mat;x K(i) de-
fined in (23): REFERENCES
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Maximum-Likelihood Spectrum Estimation of Periodic Processes
from Noisy Data *

P. Moulin
D. L. Snyder

J. A. O'Sullivan

Electronic Systems and Signals Research Laboratory
Department of Electrical Engineering

Washington University
Saint Louis, MO 63130I

5 ABSTRACT

We have developed a new approach to maximum-likelihood spectrum estimation
of wide-sense stationary processes from noisy data. A statistical model for the data is
defined. The process whose spectrum is sought is wide-sense stationary, periodic and
Gaussian, and its observations are corrupted by an additive white noise. A maximum-
likelihood formulation of this problem has been derived, and the equations are solved
numerically via the expectation-maximization algorithm. This approach presents several
attractive features, an important one being that the noise corrupting the observations is
now taken into account.

We present some recent developments for this problem. The statistical perfor-
mance of the new maximum-likelihood spectrum estimator is studied both theoretically
and numerically. Comparison with traditional estimators such as the periodogram
highlight several strong points of the method. We also identify certain limitations,
namely the instability of estimates for high noise levels. These limitations can be allevi-
ated if a priori information about the signal is available. Two such problems are dis-
cussed in which the information at hand has the form of a constraint on the input signal-3 to-noise ratio.

We show how such information can be incorporated in the maximum-likelihood
estimation procedure. First we assume the signal power to be known. Theoretical issues
of existence and uniqueness of the solution are discussed. We proceed with a problem in
which the information is less complete, when only an upper bound and/or a lower bound
on the signal power are available. The statistical performance of both constrained esti-3 mators is quantitatively studied.

I
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1. Introduction
A promising approach to maximum-likelihood estimation of Toeplir constrained covariance

matrices has been proposed recently 1]. Several further developments cai ie considered. First, this
method also applies to the dual problem of spectrum estimation. Another issue of interest is that the statist-
ical model can account for the presence of additive noise corrupting the observations and for linear
transformations of the process whose covariance or spectrum is sought. These considerations have
motivated a new approach to high-resolution delay-doppler radar imaging, where a major goal is to pro-
duce estimates of the target's scattering function (2]. In the special case of a point target and a constant
envelope transmitted signal, this reduces to a spectrum estimation problem.

This paper describes some recent developments for this problem. We study the statistical perfor-
mance of the new maximum-likelihood spectrum estimator both theoretically and numerically. Com-
parison with traditional estimators such as the periodograni highlight several strong points of the method.
We also identify certain limitations, namely the instability of estimates for high noise levels. These limita-
tions can be alleviated if a priori information about the signal is available. Two such problems are dis-
cussed here in which the information at hand has the form of a constraint on the input signal-to-noise ratio.

This paper is organized as follows. Our model is presented in Section 2. A maximum-likelihood
formulation of the problem is given in Section 3, and the equations are solved via the expectation-
maximization algorithm. Section 4 is devoted to a statistical performance analysis of this estimator and a
comparison with two other methods. In Section 5 we show how a priori information on the signal can beincorporated in the maximum-likelihood estimation procedure. First we assume the signal power to be
known. Theoretical issues of existence and uniqueness of the solution are discussed. Section 5 deals with
a less complete knowledge, where only an upper bound and/or an lower bound on the signal power are
available. The last section is devoted to a quantitative study of the statistical performance of both con-
strained estimators.

I 2. Model
The following is derived from the model presented in [1] for a point target and a constant envelope

transmitted signal. The observation is an N-vector sample of a wide-sense stationary, periodic, Gaussian
process corrupted by an additive noise:

r =-b +w, (2.1)

where b contains N consecutive samples of a zero-mean periodic process b with length P > N, and w is
an zero-mean white Gaussian noise with variance No, uncorrelated with b. The periodicity assumption is
required to guarantee that the likelihood function is bounded above; therefore, there exists the maximum-3 likelihood estimator (1].

This work was supported by contract number N00014-86-K-0370 from the Office of Naval Research.
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Now we define the spectral process associated with b, to be the DFT of one period of b,. Assume
that we are interested in estimating only M of the components of this spectral P-vector (1 _ M < P), the
other components being zero with probability 1; let c be this M-vector. This assumption is introduced to
deal with the bandlimited spectra encountered in radar applications, which arise because radar targets have
finite extent [2]. c is a Gaussian random M-vector with diagonal covariance Z, whose entries a2 (i), i
0,..,M-1, are real and positive. c and b are related by a linear transformation :

b = rtc , (2.2)3 where we have defined the M xN matrix 1, consisting of the first N rows and the outer M columns of the
P xP DFT matrix. The superscript t denotes the Hermitian-transpose operator on matrices. Our model for
the observations can now be written as3 r = Ftc + w . (2.3)

The covariance matrix for r is given by

K, = E [rrt] = F+NoN, (2.4)

where 1N is the NxN identity matrix.

3 3. Spectrum Estimators

In this section we introduce a maximum-likelihood spectrum estimator for the model (2.3), denoted
by ML1. We also define two estimators which will be analyzed and compared to ours in the next section.
The first one is the maximum-likelihood estimator derived assuming noise-free data, denoted by MLO ; the
second one is the periodogram.

3 3.1. ML1 Estimator

From (2 1), the likelihood function for Z is

L (r ,Z) = -- 2 In det (r t lr + NoIN) - 1 r t(rtfl + No/,v)-'r . (3.1)

Maximizing the likelihood with respect to Z yields the necessary trace condition which the estimate t must
satisfy [1,2]:

3 Tr [r(I',- + olv)- (rrt-FtF -NolN')(Ftr + Nv)-'rt& = 0, (3.2)

for all MxM diagonal matrices 8i This trace condition is a nonlinear equation in . Generally it cannot be
solved directly in closed-form, so some numerical search procedure must be implemented. An elegant solu-
tion is the expectation-maximization (EM) algorithm used in (1,21. An initial estimate ±O) is selected. At
step k+1 (k = 0,1,..) the estimate is updated according to

where j(k+) = argmax Q (EI k)) (3.3)

SM-1 M- 3.4)j'r±()
Q Z lno(i)-1h Y c'(i) (

iz0 i=0

and3 E [ Ic (i)12 jr ,IAk)] = [±() ((t(k)r+No/N )- Frt() + :r( (tf k )F+,v)-'
X rr t(rft2k F+NolN)'| rFtC )], . (3.5)

This algorithm produces a sequence of estimates

= E Ic (i)12 r,fk)] (3.6)

having increasing likelihood. It can be shown that the stable points of this algorithm satisfy the necessary
trace condition for a maximizer (2]. The issue of uniqueness is addressed in [3).
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Special case N = M = P
In this special case, a full period of the process is observed. r is equal to the P xP DFT matrix W.

A closed-form expression for t can be derived:
i F(i) = max(0, I(IV, r)(i) 12 - NO). (3.7)

3.2. MLO Estimator
Additive noise corrupting observations is usually not included separately in approaches to spectrum

estimation. This model was assumed in [1]. The sequence of estimates of Z is still given by (3.6) and (3.5),
in which we now let No = 0. We call this the MLO estimation. Clearly MLO and MLl are equivalent for
noise-free problems.

Special case : N = M
The problem for which the number of observations (N) is equal to the number of parameters to be

estimated (M) is of some practical interest. It also turns out that the trace condition can be solved in
closed-form in this instance. The matrix F is then invertible, indicating the existence of a one-to-one map-
ping between r and c. The MLO estimator is simply

& (i) =1 ("tr)(i)1 2, (3.8)

where t denotes ( -1)t.

3.3. Periodogram
The periodogram estimate of the spectrum is defined as the (scaled) magnitude-squared Fourier

transform of the N observations padded with P-N zeroes (31. The first M spectrum samples are then given

b&(i) = (P IN) I(rr)(i)2  
(3.9)

Special case : N = M = P
When N = M = P. the periodogram and MLO estimates are the same.

4. Bias Performance Analysis

4.1. Performance Evaluation

In this section, we estimate Z for the model (2.3) and study the statistical performance of the three
I estimators above. For each method the bias is evaluated, where

Bias [] = E [ - (4.1)

As we shall see in Section 4.3, the performance strongly depends upon the input signal to noise ratio
defined by

SNR = Eo I No, (4.2)

where Eo is the average power of the process, defined by

E 0o= (I1P) Tr [n-]. (4.3)

In sections 4.2 and 4.3, we evaluate the bias for the estimators derived in Section 3. Whenever
closed-form expressions are not available, computer simulations are performed. Typically 3000 realiza-
tions are generated for each process. For a given estimator, (4.1) is then estimated from the 3000 esti-3 mates. The analysis is carried out at various input SNR levels. Much effort was made for the special case
M = N. This provides insight into the problem since the MLO equations can be solved in closed form. The
choice of P is free, so long as P 2! N [2].
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3 4.2. Closed-form Expressions for Estimator Bias Performance

(a) ML1
As indicated in Section 3.1, no closed-form expression for the estimator is available, so the evalua-

tion of the bias is obtained by computer simulation.

m (b) MLO
Closed-form expressions for MLO can be derived when M = N. The results are presented below.

Combining (2.3) and (3.8), we can write3 o2(i) =[(c +FItw)(i)[ 2 .(4)

Taking the expectation of (4.4), we get

whcmm le E [(F(i )] = onI(i) + N o('ft)-1jj , (4.5)

which implies

Bias [&F(i)] = N0(i"t)- . (4.6)
The bias is due to the noise corrupting the observations and is proportional to its variance. The sensitivity
of the bias to the noise is determined by the diagonal entries of the matrix (lTt)-.

(c) Periodogram
Bias
Combining (2.3) and (3.9), we write the periodogram estimates in the equivalent formIF(i) = (PIN) l(Irtc + rw)(i)12 . (4.7)
Taking the expectation of (4.7), we get

E [o2 (i)] = (P IN) QT'Z1IT't)j + No, (4.8)

and3 Bias [&(i)] = [(PIN) (rrtnTt),. - a(i) ] +N o . (4.9)

The bias contains two terms. The second is due to the noise and is proportional to No. The other term is
independent of No. Even for noise-free observations, the periodogram is a biased estimator of Z unless rIt
is the identity matrix. This would be the case only for N = M = P (observation of a full period of the pro-
cess) or N/M - -c (infinite data).

4.3. Simulation results
Process 1

The first process we consider is real and has period P = 10. Its spectrum is symmetric and lowpass (M = 5).
All nonzero spectrum samples are identical:

Cr2(i) = I, i = 0,..,4.

The number of observations is N = M = 5. The noise variance No ranges from 0 to 1. Figure 1 shows the
bias for the estimators of c"&(2) as a function of SNRj,, according to the definitions (4.1) and (4.2). In the
absence of additive noise ( SNRIA - -*), ML1 and MLO are the same. Both are unbiased estimators. The
periodogram, however, is biased. When No increases from 0, the performance of the estimators is roughlyconstant so long as SNR. remains above some threshold. For larger No, all three estimators exhibit a strong
degradation in performance. Comparing the thresholds for MLO and ML1, we see the tremendous improve-
ments brought by taking the noise into account in the model. Typically, for a same bias, MLI will have the
same performance as MLO operating in a 20 dB noisier environment.
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Process 2

As shown in the next section, the periodogram does not perform well for rough spectra. This
motivated our study of a sharply peaked spectrum. The process has period P = 10, and a single nonzero
spectrum component

o'(0) = 1.

There is just N = M = I observation.

The bias for the estimators of o (0) is plotted as a function of SNRi,, in Figure 2. In the absence of
additive noise, the bias of the periodogran is -90% of c32(0). Clearly, the conventional estimator is outper-
formed by MLO and ML1. It should also be noticed that for this process, the improvement of ILI over
MLO is quite reduced.
Computational Considerations

The convergence rate of the EM algorithm depends on several parameters. The computation time for
each iteration is of order M N2 . The number of iterations required for convergence of the algorithm grows
as M and N increase. For ML1, more iterations are required as No increases, especially in the threshold
region and beyond. Typical figures are: for process I with No = 0.1, 30 iterations are required before the
spectrum estimates are stable; when No = 1, 300 iterations must be performed. Our algorithm is imple-
mented on a Masscomp model 5500. Running the program on 3000 realizations in the latter case is typi-
cally completed in 6 CPU hours. We are presently implementing these algorithms on a mesh-connected
1024 processor (DAP by Active Memory Technology), and we expect a major reduction in the time
required to produce estimates.

4.4. Discussion
The results derived above suggest additional comments on the periodogram. It can be shown that

(4.8) can be written in the alternative form [4]

E [&(i)I = (i) * Dv (i) + N,, (4.10)

where * denotes the discrete convolution operation, and O2N(i) is the DFT of the window
w cN(n) I - [n  :[nl<N for P _2 N (4.11)

N
=0 :N__.nI<-

2I w(n) =1-'7n ' :InI<P-Nfo2N>P_.

P P
- N :P-N :<n I< -P

The main lobe of Qv has width -.. Consider now a process made of sharp isolated spectral peaks, such as
Process 2 above. Equation (4.10) shows that the energy in these peaks is spread out as a result of the con-

volution operation ; consequently, these peaks are grossly estimated when 2- is large.

I 5. Constrained maximum-likelihood estimation

5.1. Description of the problem

In this section we focus our attention on MLL. An examination of Figures 1-4 suggests that MII
suffers in certain situations. When SNRJ, is low, the estimates are biased ; as we shall soon see, their vari-
ance is also large. Although the maximum-likelihood estimator is asymptotically unbiased and efficient,
these properties are not guaranteed in the small-sample problems considered in Section 4. This limitation
can be alleviated if a priori knowledge, such as SNRi^, is available. Since NO is known, such a constraint
on the signal-to-noise ratio can be translated into a constraint on the signal power that must be satsficd by
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the maximum-likelihood estimates. Now we show how this constraint can be incorporated into the EM
algorithm. The constrained estimates exist and are unique.

In Section 5.2, SNRi, is known. In Section 5.3, our knowledge is more incomplete, and only an upper
bound and/or a lower bound on SNRm, are available.

1 5.2. Known SNRi.

The equations for ML1 presented in Section 3.1 can be modified as follows to satisfy the constraint.
At each step of the EM algorithm, we maximize Q (Z ±( ) defined in (3.4), subject to the power constraint

M2(i = PE,= S, (5.1)
i=1

where Eo is the signal power. The solution also maximizes
M-Q(y.J[:) + ;.( (3°2(i) _ S), (5.2)

i=O

where X is a Lagrange multiplier. Taking the gradient of (5.2) with respect to Z, we obtain a quadratic
equation for each spectral component 2 X "4(i) - O'(i) + C i = 0 (5.3)

where

3 Ci = E [I c (i)121r, k)]

is calculated according to (3.5). The solution to (5.3) is

3~q 1 +Ii 7_ 8C 5
4X

C :X= 0, (5.4)

where Ii is either +1 or -1. The equation for X is
M-I4S X,- M I Eli4 W ,. (5.5)

i=o

In general this nonlinear equation in X cannot be solved in closed-form. Furthermore, an ambiguity subsists
about the choice of the signs Ii. The latter problem is solved by application of the following theorem:

Theorem
Assume that Co > Ci, i = 1,..,M-1. Then3 (1)

h,=-l : i= 1,..,M-l

M-1
Io=+1 :S <2Co[M - 1i, !-(Ci/Co)I

i-I

= -1 :else

1 (2) X is the largest nonzero solution of
M-I lM-I

(4SX-M + Ii_CIC,))2= 1 -8CoX, for S * C;, (5.6a)I1=1 i=1

and
M-I

X=O, for S= ; C. (5.6b)
i=1
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X is upper-bounded by 1/8C 0 , and (5.6a) can be solved numerically for X. Note that the particular case
(5.6b) is also the solution to the unconstrained maximization problem. Next, &2(i)('+i) is calculated from
(5.4). The whole procedure is repeated at each maximization step of the EM algorithm. Note that because
of the highly nonlinear nature of the problem, no analytic expression is available for the constrained esti-
mator, even in the special case mentioned in (3.7).

5.3. Known upper/lower bound on SNRi5
In this section, the a priori knowledge about SNRi has the form of an upper bound. Our approach

parallels that of the previous section, with the upper bound now expressed as an inequality constraint on the
estimated signal power. At each step of the EM algorithm, we maximize Q (ZfZk )) defined in (3.4), sub-
ject to the inequality constraint

M-Z o:i _PEru S,,=,,. , (5.7)

where Em. is the upper bound on the signal power. If the unconstrained solution satisfies the upper bound,
the constraint is inactive and the estimate is given by (3.6). Otherwise, the constraint is active, and as in
Section 5.2, the solution is the maximizer of the expression (5.2).

We can expect the performance of this estimator to be strongly conditioned by the choice of Em,. In
the limiting case E,.- 00, the constraint is always inactive and the estimator is equivalent to the uncon-
strained estimator. For the other extreme case Emax .- + 0, the constraint is always active. A lower bound or3 simultaneous upper and lower bounds are treated in exactly the same manner.

6. Simulation results

In this section, we apply the SNR-constrained estimators derived above to Process 1, and we evalu-
ate numerically both their bias ane mean-squared error, where

Var (tZ] = E [ 2] - (E [t]) 2  (6.1)

MSE [Z]= E [(Z-Z)2 ] = Var [±1 + (Bias [])2 . (6.2)

The output signal to noise ratio matrix is defined as follows :

3 SNRoua [±] = E [t±] (MSE [ )y/2. (6.3)

Figures 3 and 4 give a plot of the bias and SNRo, for three different estimators of a"2(2) as a function
of SNRi., according to the definitions (4.1), (4.3), and (6.3). The estimators represented on these figures
are: the two constrained estimators of Section 5, respectively denoted by EQ-MLE and INEQ-MLE, and
defined for the power constraint S = 5 and S,,t = 15, respectively ; and the unconstrained estimator ML1
of Section 3.1.

In the absence of additive noise ( SNR, -4 -,), MLI and EQ-MLE are unbiased. However, the
periodogram is biased, and so is INEQMLE. For the latter, this can be understood as follows. The distri-
bution of the sum . of the M estimates &(i) is truncated (to S,, = 15), and therefore the sum of all biases
is negative.

When No increases from 0, the performance of the estimators is roughly constant so long as SVRL,
remains above some threshold. For larger No, all estimators exhibit a degradation in performance. Note
that for the SNR-constrained estimators, each bias is upper-bounded by S, - a'(i), and lower-bounded by
- o3(i), where S, is the constraint. Comparing the SNRo1 ., performance in Figure 2, we see other favor-
able effects of incorporating SNR constraints into the problem. For low N0 , SNR,1, is improved. This is
due to the estimates having a lower variance, which is the dominant term in SNRoW. For very noisy data,
the performance of the estimators is clearly improved. We can easily derive a lower bound for
SNRo, [Wr(i)1

max [S - o(i) , -(i)I 1.
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This bound is independent of No.

Conclusions

In this paper, we have described an approach to spectrum estimation from noisy data, based upon a
statistical model for the observations. First we derive a maximum-likelihood estimator, and evaluate its
statistical performance. A comparison is made with two other methods that do not take the additive noise
into account. One is the traditional periodogram and the other is the maximum-likelihood estimator derived
for a noise-free model. It is shown that the new estimator offers a much better bias performance. The
improvement over the periodogram is particularly noticeable for rough spectra: The bias of the periodo-
gram was as high as 90% for the process #2 we considered.

In general however, the maximum-likelihood estimates are still unstable at high noise levels. In the
second step of our study, we refine our technique to improve the performance when some side information
exists. We have studied one such problem in which some information about the signal-to-noise ratio is
available. The performance for the SNR-constrained estimators has been numerically evaluated, and com-
pared with that of the unconstrained estimator and of the periodogram. The new estimators perform
significantly better than their competitors for low SNR R. Because of the SNR constraint, the estimates are
not allowed to take on the large values that were produced in the unconstrained estimation problem. This
results in the estimates having a lower variance. One additional feature of our approach, and an attractive
one, is its versatility. Only a slight modification of the (unconstrained) algorithm is required.
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U THE ROLE OF SPECTRUM ESTIMATION IN FORMING IIIGII-RESOLUTION RADAR IMAGES
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ABSTRACT

We have developed a new approach to forming high-resolution
images of radar targets from delay-doppler, spotlight-mode radar ... / FEATURE TARGET Target

data. This approach is based on a model for the target's reflectivity
in terms of wide-sense stationary, uncorrelated scatterers having tXTACTiON IDENrirlcAT:oN Tye

complex-valued Gaussian statistics. The imaging problem is to Radar
estimate the target's scattering function in terms of radar-echo iage
data acquired with a series of target illuminations. We develop
a method for solving this multidimensional spectrum estimation TARMPLGT5 CFORMATON

problem through the use of maximum-likelihood estimation
implemented via the expectation-maximization algorithm. Figure 2. The use of an image for identification.

INTRODUCTION

A system for forming the image of a radar target is shown in
Fig. I. There are two modes for collecting data to form the image.
An antenna of sufficient size may be used to focus radar energy

i,.t

A
T14 COCURRLN7
ET - IIUAGC rORUATION a_

rE~ATURC EXTRACIQON itE4TiriCATto'i I 'P.

U IA a IARGCT 
C IA Tt rAl e

,!ATiC irAT

I U'T Alrt' t,

T'A TU"t

D[RPTIONI/LiD
VO RM Figure 3. Coordinated target imaging and feature extraction.

Detay-Doputer IMAGE forming an image of the target and extracting featuies so that

Radar Dat:i Dipay these two processes may interact constructively so as to improve
both. As a result of other developments in our laboratory [4,5],

Imaqe we believe that the method we have developed for forming target

images is ideally suited for making this potentially important

Figure 1. A radar imaging system. extension.
Wehner [E] and Mensa [2] describe methods for forming images

onto a patch of the target having a size corresponding to a resolution of radar targets from spotlight mode data. A series of identical

element. By varying the position of the incident energy in some radar pulses (or pulse groups) having a linear FM chirp modulation
fornm of' raster pattern over the target, all reflecting patches may is used to illuminate the target. The echoes are processed with a
be illuminated with a series of radar pulses and an image of the two-dimensional Fourier transform to form the image. This
target formed by displaying the return energy for each patch. approach is based on an intuitive, deterministic analysis which
Alternatively, in spotlight mode, the energy is relatively unfo- results in accurate target images under high signal-to-noise ratio
cused, and the entire target ;o illuminated simultaneously by each conditions. Our approach differs by incorporating a statistical
transmitted pulse. The same )rm of image of energy versus range model for the target's reflectivity, accommodating receiver noise,
and cross-range coordinates can be formed from the more and in using a statistical estimation approach for developing a
complicated echo data by suitable processing which utilizes delay method for forming the image. A full development of our method
and doppler-shift %ariations present in a series of target illumi- is contained in (3].
nations. Our concern is with forming high resolution images from
data acquired in the spotlight mode. TARGET MODEL

There are at least two uses for high resolution images of a We model the complex envelope of the echo data according to:
radar target. One is in developing a catalog of radar cross-section
profiles for various target types. Another is for target identifi- r(t)= [ s7 (t-'t)y(t- ,t)dr * t), ( )3 cation. The latter use, illustrated in Fig. 2, normally proceeds in -.

rwo separate and independent steps. First, the target's image is
formed, and then features of the target, such as edges and textures, where iu(t) is a white Gaussian noise with spectral density ,vo,

are estr.1ced ind used with any collateral information that may s,(i is the complex envelope of the transmitted signal, and y(t. C)
be .available to identify the target. As illustrated in Fig. 3, we is the reflectivity at time t of all reflecting patches at two-way
are also interested in developing a more coordinated approach to delay r. mt.t) nay be expressed in terms of all reflectivities at
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I delay t according to computer with 1024 processors. This implementation will permit
comparisons to be made between this maximum-likelihood method

y(t.=) - f c(f. t)o',2 "df. (2) and the more conventional method that employs two-dimensional
Fourier transforms.

here c(f. -r) is the reflectivity of all the points on the target at We have performed a preliminary computer-simulation study

two-way delay -t which introduce a Doppler shift.f. Since targets in which there is a point target that is concentrated at a single
are of finite extent, both y(t. -t) and c(l. -t) are zero for -t outside range and crossrange. For this situation, forming the target image
some fixed interval, and c('.c) is zero for I outside a fixed corresponds to estimation of the power spectrum of a time seriessomefixd iteral, nd ~f.t) s zro o I utse aixe having one nonzero spectral component. Fig. 4 shows the result.
interval because the Doppler variable is equivalent to the cross- Th graph on the left in Fig. 4 is the output

range coordinate of a rotating target.
As we develop in detail in [3], (1) and (2) may be discretized

* into the matrix-vector form __________

r - 'C . %. (3)
where the superscript "h" denotes the Hermitian transpose oper-
ation, rll 1, eli 1, and %vIt I are vectors of samples of r(t ), c(f. t),
and tu(t), respectively, and r is a matrix each element of which
is the product of a sample of sr(i) and a complex exponential. ...

We have adopted a diffuse-target model for the reflectivity.
For this, the target is assumed to be comprised of uncorrelated ...

i scatterers each of which introduces a complex-valued, zero mean
Gaussian random variable as a multiplicative factor on the incident " ....
signal reflected by it. The superposition of these according to (I)
and (2) results in the radar echo data. This assumption implies Figure 4. Shown are the output SNR (left) and bias (right)
that the reflectivity vector chas a Gaussian distribution with zero for estimating the reflected power of a point target in noise.I mean and 'diagonal covariance matrix Z -= E(cc). This
covariance consists of samples of the scattering function of the signal-to-noise ratio versus the input signal-to-noise ratio, and
target, which is the power-spectrum of the reflectivity process the graph on the right is bias versus the input signal-to-noise
y(t.-t). For our approach, the reflectivity is a two-dimensional ratio, where these quantities were estimated from 3000 inde-

m Gaussian process, and the scattering function is its spectral pendent trials and are defined according to
intensity. Further, the received vector r has a Gaussian distribution SNR,, - E0 /N 0 . (9)
with zero mean and covariance matrix where E is the average power in each of the P nonzero spectral

I,- rnxr + Nol. (4) components of the reflectivity, as defined by
The loglikelihood of the data r may be expressed in terms of this I
covariance matrix according to E,- -Tr(l:):

L(% <:r) - -ln(dgtK,) - r'Kir. () and

IMAGING PROBLEM SNR"., -- ( (10)

Two different images of the target may be formed, one being w ,hs e esi

an estimate of the target's reflectivity c and the other being an where %SE( t is the sample mean-square error in estimating Z;

estimate of its scattering function , both images being displayed and
in range and cross-range coordinates. A unique aspect of our BIAS- I (t)
method is that it produces a maximum-likelihood estimate of Z
and, also, a conditional mean estimate of c so that both of the
possible images of the target can be displayed if desired. The estimates of the scattering function for the maximum-

Maximizing the loglikelihood (5) subject to the constraint that likelihood method and for the two-dimensional Fourier transform
K, must be of the parameterized form in (4) leads to a trace method (which in one dimension becomes a periodogram) are

condition first discussed by Burg, Luenberger, and Wenger [6] compared in Fig. 4. The maximum-likelihood estimates (new
aonditin heprsnt scotex by Snyer, OSuane , and Mler 6]. method) are seen to have high output SNR and low bias comparedand, in the present context, by Snyder, O'Sullivan, and Miller [3]. to the periodogram for input SNRs above 5 dB. This very pro-
While this trace condition in principle specifies the maximum- timinery resultgivesfus optimim thatbsuperior.mages ofrdiffus

likelihood estimate of the scattering function, it is a highly liminary result gives us optimism that superior images of diffuse

nonlinear equation with no closed form solution. For this reason, targets will be obtained with the maximum-likelihood method.

we have in (3] adopted the use of the alternating maximization RELATED ISSUES
approach of Dempster, Laird and Rubin (7] for producing the
maximum-likelihood estimate numerically. In [8], we have developed a Cramer-Rao lower bound on the
I A sequence of estimates of the scattering function is obtained, mean-square error performance of maximum-likelihood estimates
The estimate at step p - I is defined by the conditional expectation of the scattering function. The Fisher information matrix of this

bound is shown in (8] to play an important role in specifying
"" a E[cc'X-.r]. (6) conditions for the uniqueness of estimates of the scattering

function and in the selection of radar pulse shapes for achievingd

where -" means that the off diagonal terms on the left are zero low variance images. Convergence of the iterative sequence in
and the diagonal terms equal the diagonal terms on the right. (6) and (7) is discussed in (9]. In [10], we develop a method for

incorporating equality and inequality constraints on the input
Evaluating the right side of (6) is a standard problem in estimation signal-to-noise ratio, which results in improved estimates when
theory; it is given by such side information is available.
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A SIEVE-CONSTRAINED MAXIMUM-LIKELIHOOD ESTIMATOR FOR THE3SPECTRUM OF A GAUSSIAN PROCESS'
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Department of Electrical Engineering
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Saint Louis, MO 63130

I ABSTRACT

Maximum-likelihood spectrum estimation is an ill-posed problem. In this paper, we use a method of
sieves for addressing this issue. The estimate of the spectrum is constrained to a subset of some Hilbert
space of functions over which a complete set of nonorthogonal basis functions is defined. The estimate is
then represented by a countable set of coefficients in a nonorthogonal series expansion. By defining an
appropriate sieve on this countable set, our problem reduces to maximum-likelihood estimation of the
parameters in the sieve. Three main attractive features of this approach are: (1) the nonorthogonal expan-

sion is a convenient framework for defining the sieve and including a priori information; (2) mean-square
consistency of the estimates can be expected; and (3) we have derived a tractable alternating maximization
algorithm for estimating the parameters. The setup of this problem is general and can be applied without
major difficulties to the estimation of higher-dimensional spectral functions, as occurs, for example, in
imaging radar targets from delay-doppler data.

1. INTRODUCTION

3 Maximum-likelihood (ML) estimation of a continuous function, or even of an infinitely countable set
of parameters is known to be an ill-posed problem [1]. In this paper, we use a regularization method for
addressing this issue when the continuous function is the spectral density of a Gaussian process, and this
density must be estimated from one single sample function of the process. The ill-posedness of the estima-
tion problem is often addressed by approximating the model for the process by a simpler one, assuming
temporal periodicity. The spectral density is then discrete. It follows that for bandlimited processes, the.
spectrum is finite-dimensional and can be estimated by means of standard ML, techniques. However, the
fundamental difficulties inherent to ill-posed problems remain, indicating that the assumption of a periodic
process is not sufficient. For instance, the length of the periodic extension of the data cannot be made arbi-
trarily large without the estimates becoming very rough. Furthermore, the estimate obtained from the
observation of one single realization of the process is not consistent, no matter how many samples are col-
lected.

The approach we use for estimating the continuous spectral density does not require any approxima-
tion of the model. It is based upon Grenander's method of sieves, which provides a framework for estima-
tion in an infinite-dimensional parameter space (1]. The estimation is performed in a restricted parameter
set over which the estimates are stable. For an infinite amount of data, this restricted parameter set is dense
in the actual parameter set. This procedure leads to producing stable and, we expect, consistent estimates.

Section 2 of this paper contains a description of the model for the stochastic process whose spectral
density is sought. In Section 3, we briefly summarize some previous results in the literature, in which an
approximation of the model is made; the limitations of these methods are mentioned. Section 4 contains a
short review of regularization methods. The sieve-constrained ML estimator is described in Section 5.

0 The work described in this paper was supported by contract number N00014-86-K-0370 from the Office of Naval
Reseairch and by grant number MIP-8722463 from the National Sciemce Foundation.
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2. MATHEMATICAL MODEL

I Consider a complex-valued, wide-sense stationary stochastic-process y (t). Our estimation pro-
cedure is based upon the following statistical model for the observations. The process is Gaussian with a
mean of zero. Its spectrum S (f) is bandlimited to some f,, and N samples of one realization of the pro-
cess are observed, with the sampling frequency 1/At at least equal to the Nyquist rate 2f Furthermore,
the process is observed in complex-valued additive white Gaussian noise w (t) with spectral density No.

Under the assumptions stated above, the samples of y (t) can be represented via the Cramdr spectral
representation:

I-

y(nAt)= f exp(-j2ntfnAt)Z(df) ,0<n <_N-1. (2.1)
-I-

In this generalized Stieltjes integral, Z(df) is an orthogonal, Gaussian spectral process with variance
S(f)df f1,p.741.

In the next sections, a TML estimator for S (f) is presented. We shall find it convenient to consider a
discrete approximation to the integral (2.1). Define a uniform partitioning of the interval -fma,!ma],

M-I3, with partition size A. = 2f m,,/M. Next define the process

c(k) =(AY- [Z(fkl)-Z(fk)] , 0< k <M-1 (2.2)

This process is Gaussian and orthogonal. The variance of each sample,

c ()= .fl !f S(f)df, (2.3)

I is an approximation to S ('k). Next, approximating the Stieltjes integral (2.1) with a Riemann sum, we get

A m i A- exp (-j 2rf kn At) c(k) (2.4)IM k-0
As the partition size tends to zero, y(.) converges to the stochastic integral y (.) in the mean-square sense:

y(nAt)'= Ni.m.T(nAt) (2.5)

Notice that in the special case of a periodic process with period M At, )(.) = y (.), so that (2.4) is the
exact spectral representation of y (n At). This observation has motivated using (2.4) as a model for y (.) in
[2]. The parameter M is greater or equal to N but is not further specified, but M should be large enough to
ensure that the model approximation is valid. In (2] the issue of ill-posedness is addressed by keeping M
finite. In the next section, we will summarize some known results for this estimator. On the other hand,
the sieve-constrained ML estimator presented here is still based on the representation (2.4), but does not
require M to be finite. As such, this estimator does not involve any model approximation, as shown in
(2.5).

We now specify the model for the observations. Using the same vector notations as in [21, we get,
from (2.4):

r = rtc + w, (2.6)I where r is the N-vector of observations, w is a noise vector with diagonal covariance NoJN, where IN is the
NxN identity matrix, and c is the M-vector formed from the samples of the orthogonal process c(k)

M-I

defined in (2.2). Since c is orthogonal, its covariance Z is diagonal with entries {'(k)} . F is a MxN<2f maxL
matrix with (k,n) entry given by - exp(-H2r1tfkn ); finally, t denotes the Hermitian-transpose

operator for matrices "

r " can be generalized readily to accomodate a linear transformation of y (.) in the measurement, aa occurs Ln the radar
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The covariance matrix for r is given by

K, = E [rrt] = rtxr + NJN. (2.7)

3. UNCONSTRAINED ML ESTIMATOR

In this section, we introduce the ML estimator for the spectral matrix Z defined in the model (2.6).
From (2.7), the loglikelihood function for E is

L (r,Z) = - In det (rtZF + NolN) - r t(Ft'F + NolN)='r. (3.1)

Maximizing the likelihood with respect to Z yields the necessary trace condition which a positive definite
estimate must satisfy [2]:

Tr [rfT' (,rt-k,)K;-lFtSf] -0O, (3.2)
m with

k, = r'tr + NoIN ,

for all admissible M xM diagonal matrices 5i (2. This trace condition is a nonlinear equation in . Gen-
erally it cannot be solved directly in closed-form, so some numerical search procedure must be imple-
mented. An approach is the expectation-maximization (EM) algorithm of Dempster et al. [31 used in [2].

The complete data are defined as (c ,w). An initial estimate f(o) is selected. At step k+l (k = 0,1,..) the3 estimate is updated according to
Q ( k ) = argmax Q (Z'i (k)) (3.3)

Ian d i=O & (i)

E [IC (i)121Ir,±(k)] = (jfk)~ ±(k)r1K,71 (k)rtt(k) + (k)rKr-1(k )rrtK,.1'(k)r'Tik)1 (i j) . (3.5)

3 where

K,(k) =r Ifk)r+N oiv.3 Thbis algorithm produces a sequence of estimates

(=(i)) = E t c (i)12  r 0), (3.6)

having increasing likelihood. It can be shown that the stable points of this algorithm satisfy the necessary

trace condition (3.2) for a maximizer [2].
The performance of this estimator has been evaluated in previous studies and compared to traditional

spectrum estimators such as the periodogramn (4, 5). It has been shown that

(1) the NIL estimates have a very low bias;
(2) the EL. estimates offer a better trade-off between variance and resolution than the periodograrn;
(3) the nL estimates are not mean-square consistent. This unfortunate result is due to the fact that the

dimension M of the parameter space is at least equal to the number of data N. We are actually deal-
ing with a srmall-sample ML estimation problem. This observation is one factor that motivated the
study presented in the next sections.

m imaging problem (21.
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4. REGULARIZATION OF THE ML ESTIMATES

According to Hadamard's classical definition, a problem is said to be well posed if: (1) it has a solu-
tion, (2) the solution is unique, and (3) the solution varies continuously with the data. A problem is ill
posed if it is not well posed. Small changes in the data can then produce unbounded changes in the esti-
mates. Typical examples are inversion of certain Fredholm integral equations and the reconstruction of
functions from truncated Fourier transforms [6].

The ML estimation procedure produces similar artifacts when the number of parameters (M) is large
compared to the number of data samples (N). The estimates are extremely sensitive to small changes in
the data and exhibit a very rough shape characterized by very sharp peaks and low valleys. We can say
that the problem is practically, if not technically, ill posed. Such a behavior is highly undesirable, and a
regularization of the estimates is required. This concept was introduced by Tikhonov (7]. A large bulk of
mathematical literature has been written on this subject; see for instance Bertero (8] for a tutorial.

One possible method for the regularization of estimates is the method of sieves, introduced by
Grenander [1]. According to Grenander's definition, a sieve in a parameter space A is a family of subsets
S(J.) of A indexed by a positive parameter 4± called the mesh size. A restricted ML estimate exists over
each set S(j.). As the mesh size tends to zero the sets S(j.) will be large enough to allow the ML solution to
converge to any solution in A [1, p.357]. For the problem at hand, the choice of a "good" value of j± will
depend on the data record size, the noise level, and possibly other factors. A major problem is to find
sieves which will make the ML estimates converge and possess some desirable practical features such as
analytical and/or computational tractability. For instance, one might consider a convolution sieve:

S)= (i) a(i)=Tj(i) * W(i) O<i <M-l}, (4.1)

where o2(i) is the constrained spectrum, i(i) is any spectrum, and Nf,,(i) is a convolution kernel, or "win-
dow", with mesh equal to p. However, it is not clear that finding spectral estimates within this sieve is
computationally tractable. In 1985 Chow and Grenander recognized that regularizing the ML spectrum
estimates with a convolution sieve appears to be a formidable task, so they studied other types of estima-
tors [9].

Here we recommend a regularization method based on nonorthogonal expansions of the unknown
density function. This approach leads to computationally tractable ML estimates. As discussed in §5.3, we
also expect the estimates t6 be asymptotically consistent.

The regularization procedure developed in the next section will be applied to the technically ill-posed
spectrum estimation problem in which the ratio MIN tends to infinity, where the approximate model (2.4)
converged to the exact model (2.1). We will show how to solve this infinite-dimensional parameter estima-
tion problem.

1 5. A METHOD OF SIEVES BASED ON NONORTHOGONAL EXPANSIONS

The spectrum S(f) belongs to a Hilbert space of functions defined over [-fm, f ]. Denote by H
this Hilbert space, and by H, the subset of all nonnegative functions in H. Typically H is
L 2 [-f,,,fm m]. the space of square-integrable functions over [-f mx Our goal is to represent the
spectral function in H. in terms of a set of basis functions having localized support. This permits a good
local representation of a function. As such, this is related to the concept of wavelets.

5.1. Definition of the sieve

Consider a spectral M -vector o. To this vector we associate a step function S (f) according to the
map ST 4 defined as follows:

v-I

ST 4 [a] • R-' --+H : or - S(f=sTW [Cr= I Z (i )X, () (5.1)
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where is the same uniform partition of the interval (-fmafmax] as in Section 2, R'' is theM-
dimensional Euclidean space, and Xj (f) is the indicator function over the i -th partition interval.

Let (W,, (f), be a nonorthogonal set of positive basis functions in H,. Consider the set A of all

functions in the span of the (Im :=0, with positive coefficients:

3 ASUf) I SVf) a ( V .(f a (m)> 0 (5.2)

We define our parameter set to be A. Clearly A is a subset of H... It would be desirable to have (I,) ,.
be designed so that A is dense in H. It is well known that this can be achieved with {J,, }, defined as
indicator functions over a partition of the frequency domain, in the limit as the partition size tends to zero.
How A is made dense in H. for more elaborate designs remains to be investigated.

Now define the following step-function approximation of v1, (f):
4fV.., (f) STW I , 1, (5.3)

where _ , is a M-vector of samples of W,,(f) taken on the partition of the frequency interval. As
M --*, V,, (f') converges to W,. (f) in the norm of H. We define a sieve S(M, Q ) on S (f) in A by trun-
cating the series representation (5.2) to a finite number of terms Q and considering M-step approximations
to the basis functions,

Q -1
S(M.Q)= S(f) IaS(f)= na(r)Wm,(f) a(m)>0 (5.4)I tn~=0

The functions in the set S(M,Q) are constrained to be M-step functions of the type (5.1). For the time

being, we keep M finite, but ultimately M will be allowed to tend to infinity. We view [a(m))Q'- asIM.
being Q unknown parameters for which ML estimates are sought.

Why nonorthogonal basis functions?
Before considering.the general problem, we mention the special case where the basis functions con-

sidered in (5.4) are Q indicator functions over disjoint intervals covering the frequency domain. In this
instance, the computation of the a (m)'s is straightforward *. However these basis functions have the
major disadvantage that the estimates are step functions, and so display discontinuities that are uncharac-
teristic of spectral densities.

To achieve good representations for a richer class of functions, we have to forgo the aforementioned
restriction on the structure of the basis functions. A possible design of the basis functions might be based
upon dilations and translations of a smooth basic function. Such a design is used in the wavelet literature
because it provides a convenient multiscale representation of the function of interest [10, 11]. This is usu-
ally achieved more easily with nonorthogonal basis functions (Ill.

Our strategy in using other basis functions will have practical interest if a tractable parameter estima-
tion procedure can be derived. This issue is addressed in the next section.

I 52 Computation of the sieve estimator

To each function S(f) in the constrained set (5.4) is associated a spectral M -vector .2 via the
inverse map

o2=ST6t [ S (f) I . (5.5)

I The maxnizaatio problem (5.7) can thai be solved in closed form.
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Since the map ST47' is linear, we conclude from (5.1), (5.4) and (5.5) that the vector o'2 is constrained as
follows.

Q-17_ a (m )%f. (5.6)

The ML estimates of the a (m)'s can be obtained by using the EM algorithm described in Section 3. At

each step the expression (3.4) is maximized with respect to & subject to the sieve constraint (5.5). This
* amounts to finding the maximum with respect to a of

(k))- 1 MF E 1 -I ~C (i )12 tr4()]
Q(ald(k)) - 2 In j a(m)M,,(i) - (5.7)

I ~ ~i=o [,.=o . i-o am (i

This maximization problem is very difficult and must be solved via some numerical procedure. Keeping in
mind that this operation has to be repeated at every iteration of the EM-algorithm, one is hardly attracted
by this prospect. We propose the following method instead.

An EM algorithm has been developed, based on the definition of anew complete data space for pro-
ducing the estimates. This method is set up as an unconstrained maximization problem in a Q -dimensional
parameter space and, as such, it does not involve any computation in H. Because of the existence of such
an algorithm, our estimation procedure based on nonorthogonal expansions turns out to be computationally

feasible. This usually represents an impressive computational saving and is a major attractive feature of
* this approach.

Completellncomplete Data Spaces

Write c as the sum of Q independent vectors:
Q-Ic (5.8)

where ,, is a M-vector, sample of a 0-mean Gaussian process with diagonal covariance a (m)P,, with
'*P, a diagonal matrix made of ( qf,,,(i), i e [0 ..M-1] ). These Q processes are independent. Now
define the J,. -vector c. as the restriction of C', to its support set SM. The covariance P,,. of c, is made of
the nonzero entries of i,,. With these notations our model (2.6) becomes

M-0
I

: r' C,. + W . (5.9)
M-0-

We define the complete data as ( {c )m.o; w). Following this definition we write the loglikelihood
for the complete data as

Q-I

Qa-1 Q-IIn Y.ldet (a (m ) ) - 7, c M(a(m)T.)"  c,.
M-,0 .-0

Discarding all terms not involving a, we obtain:

l, (a) 1 =- /In a(5.10)
.0 0,, a (M ) i's. T w, .,n(i)

The conditional expectation of I.., (a) is then

(k -1 -t 1 E [[c.,(i)[:Jr~d'k)1
Q (ald k)  J- , Ina (m ) - (5.11)

M -) , , a m ) i as. w w , (i)
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3 Taking the partial derivative of (5.11) with respect to a (m), and setting the result to zero yields

1 E [Ic,(i)121rdCk)] (5.12)
' t iS. _. . (i)

I Next we evaluate the conditional expectation of c ,(i)1 2 in (5.12). Define
e.k =E l c. Ir 4k)]. (5.13)

The conditional expectation in (5.12) is the i-th diagonal element of the matrix

E C c,m cnr4d(k)I] = E C (c.-, _k)) (c,, -k))I r,d < )+,k)nk t
= (KZk) K (k) r)(K)K - (k) r)t+K _ Kk) Kr-I(k)K) , (5.14)

where we denote by Kr, the conditional correlation E (xytld(k)] of two random vectors x and y. Now, the
expectations are evaluated from the model (5.9). Note that because the cm 's are independent, the condi-
tional expectations on d(k) are simply conditional expectations on d(M)(k). We get

Kk) = E [ c,.r'l d (k)] = d (m )(k ), . ,, (5.15a)
I Q-I

Krk) =,E [ rrtid(k)] = E d + N/, (5.15b)
j=0

K Okj = E [ c, c I d(k)] = d (m)(k)xP. (5.15c)

Substituting the expressions (5.15a,c) into (5.14) yields
E [ cCZI r,d~k)] --d(m )C ,k) + d(mn)(k)kmr, KP"' ( ) [rrt-K, k)] K7 1 ( ) rt ,d(m )(k) , (5.16)

3 with K,( ) given in (5.15b). Taking the i-th diagonal element of (5.16) and substituting in (5.12), we get

d(m )(k+l) = - M i) [ d(m )(k .in(i) + d(m )'4IM,,(i)

J. its.s. M..((i

3 ~=d(m )(k) +d(m)k) . (j

Ixt (. K,-"(') (rr t_"K.')) Kr-t(*)Fr.], ] d(m)( ) . (5.17)

Now defining the NxN matrices

Z(k) = K, - (kI)(rrt.KIk)K.-1 (k) (5.18)

K .-L r-.'IFr. , (5.19)

the term between brackets in the right-hand side of (5.17) can be written

I -(i)(. Z (k.),i= lTrIFMr MZ ( )F t ]

ES..
-- = Tr [ 1F,..,,

=Tr[K" Z(k)] (5.20)

I Substituting (5.20) in (5.17) we get the update equations at stage k of the algorithm:

d(m)(") = d(n )(k) + d(n )(k) Tr [ K, Z(kI d(m)) (5.21)
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-K,. d d)(k)K + No I. (5.22)
j=o

Comments

(1) The update equations (5.21) and (5.22) highlight the role played by the basis covariances K. in this
representation.

(2) As M -4 -o, the algorithm for estimating the coefficients a (m) is well-behaved. The reason is that
the basis covariance K, in (5.21) is then given by the limit of the matrix product (5.19) as M - ,
which is a matrix of integrals with entry (n ,m) given by

I-

Km(n,m)= f exp(-j27f(n-m)At)Wm(f)df
--

We can thus let M - c without any loss in stability of the estimates or any increse in computations.
(3) Implementation of the solution:

Each matrix K. is constant and can be computed off-line. At each step the covariance matrix K, in
(5.22) must first be inverted, which accounts for N 3 operations. Following this, updating each d(m)
just requires N2 multiplications/additions. The complexity of each step of the EM algorithm is thenf N 3 + QN2, as compared to N3 + MN2 in the unconstrained case. The saving is impressive for infinite
M, keeping Q - N.

(4) It is easily shown that the trace appearing in the update equation (5.21) is the partial derivative of the
incomplete-data loglikelihood with respect to a (m).

5.3. Some Regularization Aspects

U The most attractive feature of this approach is a theoretical one. We are effectively estimating Q
parameters instead of M as in the unconstrained problem. The choice of Q is somewhat arbitrary and
depends on the way we have decided to represent the spectral function. As a rule of thumb it seems desir-
able to have Q (# of parameters) no larger than N (# of data). This can be done while letting M be infinite,
a result that could not ha,e been obtained without regularization of the ML estimates. The process in our
model then approaches the limiting case of a (nonperiodic) stationary process, and as such does not involve
any model approximation.

Consistency of the estimates

A major goal when defining a sieve is to ensure consistency of the estimates. Although no thorough
study has yet been undertaken for the sieve (5.4), we believe that consistency can be achieved, provided
that Q tends to infinity at a slower rate than N. Typically : Q - N' , with 0 < c < 1. Another objective is
to ensure rapid convergence of the estimates. Clearly the issue here is the design of the basis functions,
which is one of our current research areas.

CONCLUSIONS

We have proposed a method for a estimating a spectral function represented by a linear combination
of basis functions. The task of finding the ML, estimates of the coefficients of these basis functions looks
formidable at first (refer to the optimization problem (5.7)). However we propose a method based on the
decomposition (5.8) of the spectral process into a sum of Q independent spectral processes with known
covariance, up to a scale factor. The subsequent reformulation of the complete/incomplete data spaces
leads to the derivation of a powerful algorithm for evaluating these scale factors.

4
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The main features of this approach are: (I)flekibility. The choice of basis functions is wide open. In
particular we can choose the shape of the basis functions, amount of overlap, and support set extent (possi-
bly non-uniform). (2) using an exact model. No approximation of the exact model for the stochastic pro-
cess is needed. (3) computational efficiency. The computational complexity of the algorithm is a function
of the dimension of the parameter space, not of the partition size of the frequency axis. An important result
is that it is now possible to let M - -o without any increase in the number of comn1,:,'Jns

Several interesting questions remain open issues. In particular it is desire " ' ','.Aieve mean-square
consistency of the estimates. As mentioned in §5.2.2, this might be done by letting the sieve grow at an
appropriate rate as N - -,. The issue of uniqueness of the estimates should also be investigated. Finally,
the design of the basis functions will determine the overall estimator performance. as fr as convergence
rate and sensitivity to noise are concerned.

Also note that the setup of this problem is very general and can be applied without major difficulties
to the estimation of higher-dimensional spectral functions. In particular, the spectra of interest in the
radar-imaging problem described in [21 are two-dimensional. The application of the ideas in this paper to
the radar-imaging problem is another area of active research.
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ABSTRACT

Recent papers have outlined a new approach for spectrum estimation and radar
imaging based on expectation-maximization algorithms for structured covariance estima-
tion. Performance of this approach has been promising for the problems studied. Appli-
cation of this approach to real data sets has been limited, however, due to the need to
invert a matrix whose dimension equals the size of the data set. For radar applications
where an image is to be formed, data sets can be on the order of 214 for 128x128 images.
This makes the use of the new approach difficult in its previously described form. This
paper proposes both approximation methods for inverting typical matrices and constraints
on radar transmitted signals which make maximum likelihood image estimation viable.
These constraints may be satisfied for real signals used in radar imaging systems. Simu-lations are shown to demonstrate the performance of the algorithms. Finally, motivated
by the images resulting from the simulations, regularization methods are discussed.

I Introduction
New approaches are being studied for maximum likelihood spectrum estimation and radar imaging

which are based on using the expectation-maximization algorithm [1] for structured covariance estimation
12-4]. In this paper, we focus on the radar imaging problem, although many of the results hold for similar
spectrum estimation problems. The limitations of our previous algorithm [4] are very clear for the radar
imaging problem with large data sets. In order to form an image from a data set of size N, a matrix of
dimension NxN must be inverted. When N is on the order of 2 4, this inversion is not practical without
exploiting its special structure or making some approximations.

First, the equations which describe the radar data are defined. Next, the algorithm derived in [4] is
presented. After discussing the role of the matrix inverse in the algorithm, possible implementations on
massively parallel machines are proposed. Even the huge number of processors available on massively
parallel machines cannot make the inversion problem tractable without additional assumptions. For practi-
cal radar imaging problems, the matrix to be inverted is Toeplitz-Block Toeplitz, so some savings in com-
putations are possible by exploiting this structure. Other improvements are possible by making further
assumptions about the transmitted signal and the image to be formed. Finally simulations are presented
and the need for regularization methods discussed.

A model for the received signal in a radar system is given in [5] for reflections at microwave fre-
quencies and in [6] for reflections at optical frequencies. The reflectivity process which characterizes the

This work was suprxrtcd by contract number N00014-89-K-1508 from the Office of Naval Research.

lo appear in Proceedings of the 1990 Conference on Information Sciences and Systems, Princeton NJ, March 1990.
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target is a random process which is stationary at each delay. Thus the samples of the reflectivity process
have Toeplitz covariances, and the problem of estimating the parameters of the underlying spectra reduces
to a Toeplitz covariance estimation problem. We take circulant extensions of the covariance matrices and
estimate spectrum samples.I
1. Statistical Model

The target is described in terms of its reflectivity. It is assumed that the radar transmitted signal is a
plane wave at the target so points on the target at a cross-section perpendicular to the line of sight sum up
to contribute to the same return signal. This sum changes as a function of time and is denoted by b (t ,t).
The variable "T is the distance of points on the target from the transmitter given in time units as the time it
takes for a wave to propagate to the target and back to the transmitter (two-way delay). From this model, it
is not apparent that separate points at the same two-way delay 't may be differentiated to obtain an image.
These points may be differentiated if their velocities relative to the transmitter are different. In particular,
if the target is a rotating rigid body, then the velocity of a point in the direction of the transmitter is propor-
tional to the distance of that point from the line of sight. Since the Doppler shift introduced by a point on
the target is proportional to this directed velocity, a delay-Doppler image of a rotating rigid body is
equivalent to a range-crossrange image. The problem is to determine the power reflected from points as a
function of delay and Doppler and then to display this power function as an image of the target. Even if
this rigid body assumption for the target is not valid, a delay-Doppler image can be a useful image of the
target region.

The reflectivity b (t ,t) is the superposition of all reflectivities at delay t, times the Doppler shift terms
they introduce. It may be expressed as

b(t,)= c (f ,)e 2i ft df, (1.1)

where c (f ,T) is the reflectivity of the points on the target at two-way delay t which introduce a Doppler
shift f. The target is assumed to have finite extent. This implies that both b (t,T) and c (f ,'T) are zero for T
outside of some fixed interval. It also implies that c (f ,) is zero for f outside of some finite interval
because the Doppler variable corresponds to crossrange extent of the target.

The literature on radar reflections [5,6] describes statistical models for the reflectivity when the target
is rough in the sense that multiple scattering sites are present in a resolution patch on the target. The model
states that the reflectivity of a patch on the target is a complex valued Gaussian random variable with zero
mean and is uncorrelated from patch to patch. When our model is discretized with ICR 4

'R resolution cells
(the subscripts CR and R denote cross-range and range, respectively), this corresponds to the assump-
tions on the reflectivity of patches of the target

E [c (k,i) c (k',i)] =0
E [c (k ,i) c"* (k ',i c]=  (k ,i) 5kk, 8ii. , (1.2)

for -(lcR-1)/ 2 <k < (IcR- 1 )/2 , 0 !i <lR-I . Here, a(k,i) is the real, nonnegative covariance of the
rclcctivity of the patch at Doppler k and delay i. The scatterers described by this model arc called wide-
sense stationary uncorrelated scatterers (WSSUS) by Van Trees [5] because the assumptions imply that

E [b (n ,i)b (n',i')] = Kb (n-n',i )5, , (1.3)Iw where b (n ji b (n At -i AT/2,A'r) and

IKb (n ,/) Z a (kj,)expUj 21cknfoD At ], (1.4)
k-(Im-1)2

where fD is the step between successive Doppler samples in the image plane, At is the delay step, and At
is the time between successive samples of r(t).

In a radar system, each signal is typically described as the product of a baseband signal times a com-
plex exponential at the carrier frequency. All of the interactions of interest for narrow band radar systems
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may be described in terms of these complex valued baseband signals which will be called complex
envelopes of the signals or simply the signals.

Let ST(t) and sR (t) be the complex envelopes of the transmitted and received signals, respectively.
The received signal is the superposition of the reflectivity from all two-way delays times the appropriate
transmitted signals,

sR ( = ST (t -T)b (t-'t/2,r)dc. (1.5)

In Equation (1.5), the '/2 arises because it takes that long for the reflected signal to return to the receiver.
The available data are the sum of the radar return signal and additive white Gaussian noise

r(t) = sR(t)+ w(t)

r (t) f s, (t-r)b (t -?/2,'r)dt + w (t) . (1.6)

This equation forms the basis for our model.

The processing is assumed to be performed digitally so that discretized versions of b and c are used.
Equation (1.1) is substituted into (1.6) and approximated by samples of the signals c and w. The discrete
equation may be written in vector form as

r = rtc + w, (1.7)3 where r is a matrix whose entries are samples of the transmitted signal times appropriate complex
exponentials, and the vectors c and w are defined appropriately.

I 2. Maximum-Likelihood Solution
The loglikelihood function for the data is

L (KR ;r) = -ln(detKR) - rt(KR)-ir, (2.1)

where KR is the covariance matrix for the received data r,

I = rtYr + NI, (2.2)

and E is a matrix with diagonal entires a(i,k). As shown first by Burg, et al. [3], a necessary condition for
a matrix to maximize the loglikelihood function is the trace condition

tr [(KR 1rr t K, - KR')SKR ] = 0. (2.3)

The matrix 5KR is a variational matrix which takes values in all possible additive variations of the matrix3 KR, and may be rewritten as rsYr, where BE is a diagonal variational matrix.

An EM algorithm has been derived [4] to estimate the matrix E. The estimate at step p+I of Z is
given by the diagonal elements of the conditional expectation of cct or

d
Z(P+I) = E [cct I Y!Z),r], (2.4)

d
where = means that the off diagonal terms on the left are zero and the diagonal terms on the left equal the
diagonal terms on the right. The computation indicated in (2.4) is a standard problem in estimation theory.
This equation may be written as [4]

d
Z ( +1) = Y' ) + (2.5)

z(')F(Fts(P)F + NO1)- 1 (rrt - -)F - Nio)(rty.)r + NOl)-IF ' ).

Equation (2.5) defines the iteration sequence used by the computations. To start the algorithm, V' ) is
chosen as an arbitrary positive definite diagonal matrix.
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There are two possible images which may be displayed. The first consists of estimates of samples of
the scattering function. The second consists of magnitudes or squared magnitudes of estimates of samples
of the reflectivity function. The diagonal elements of Z are the values which are displayed as the scattering
function image of the target. Thus, at each stage an image is calculated and may be displayed. Some
appropriate stopping criterion is used to terminate the algorithm. At each stage of the algorithm the condi-
tional mean estimate of the reflectance is also generated. At step p, this estimate is

E [c I1:(),r] = zv)Fr(rt~z)r + NoI)-'r. (2.6)

The magnitude or the magnitude squared of c may also be displayed at each stage of the algorithm as an
image of the target. Thus both types of radar image commonly viewed are generated by our algorithm.
We feel this is a unique feature of our algorithm.

Let the corresponding sequence of covariance matrices for the data r be denoted
Kj ) = rtl'r)r + N01. Since this iteration is an EM algorithm, it has all of the properties associated with
this type of algorithm. In particular, the incomplete data loglikelihood is nondecreasing in the sequence of
covariance matrices W .

There are obviously issues associated with the appropriate or desired sampling rates of r (t) and of
c (f ,t). Some of these issues are addressed in [4]. The quality of the image obtained and the resolution
achievable are intimately related to the sampling issues.

This section has presented a review of the equations used to produce target images. This approach
starts with a model which accurately accounts for the random nature of radar reflections and adopts the
maximum likelihood method of statistics to estimate delay-Doppler high resolution images of radar targets.
Questions associated with uniqueness of spectrum estimates and convergence of the EM algorithm are dis-
cussed in [4,7]. Equation (2.5) is a computationally demanding update. Some of the issues associated with
this update are addressed in the next section.

3. Implementation of Algorithm
The implementation of the iterative algorithm described in (2.5) involves a number of linear algebra

operations on arrays which may be very large. As a result, the development of efficient and numerically
stable routines, on both serial and massively-parallel machines, to perform these operations is of great
importance in evaluating this algorithm. Because massively-parallel architectures are relatively new and
higher level software is not yet available, algorithmic development for these machines is more involved.

In order to understand the issues associated with our effort to apply the algorithm of (2.5) to a paral-
lel architecture, one must understand, to a degree, the limitations imposed by our resident parallel machine,
the DAP 510, and its programming language, Fortran-Plus. Fortran-Plus is an adapted version of Fortran
which hides all communication between processor elements from the uier by virtue of its data structures.
Scalars, length-32 vectors, and 32x32 matrices are all distinct data types, and arrays of each may be
formed. Additionally, Fortran-Plus supports no complex data type. Thus, the large, complex matrices
found in our signal model should be represented as 3-dimensional arrays of Fortran-Plus matrices in order
to take maximum advantage of the parallel nature of the DAP. As we shall see, this in some ways compli-

* cates and in other ways simplifies the task of programming.

3.1 Algebraic Operations in Algorithm
If one examines (2.5), it is seen that the indicated iterations can be performed by making use of only

the following basic linear algebra operations:

C=A+B

C=AB

C= AtB

A =vw t

w=Atv
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B = A-  (3.1)

where A, B, and C are complex matrices, and v and w are complex vectors. The addition operation is
greatly simplified by the data structures of Fortran-Plus; one need only add each of the 32x32 components
of A to the corresponding component of B. Furthermore, each of these 32x32 additions can be accom-
plished by a single statement in Fortran-Plus.

Each of the feur multiplication operations, although different, can be performed in Fortran-Plus by
following a similar strategy. Consider the first of these, that of performing matrix multiplication, where the
matrices in question are complex and of size 32nx32n, where n is a integer greater than 1. Thus, these
matrices would be represented as an n xn x2 array of Fortran-Plus matrices.

Golub and Van Loan [8] discuss two approaches to the matrix multiplication problem based on the3 following partitioning:

n xn x2 (3.2)

The more efficient of these two methods is that developed by Strassen, which performs the multiplication
of two M xM matrices via 7 multiplies and 18 adds of M /2xM /2 matrices:

P1 = (A,1 + A22)(B1 l + B22)

P2 
= (A21 +A22)B 1I

P3 = A11 (B12 - B22)

P4 = A22(B 21 - B, 1 )

P5 = (All + A12)B2

P6 = (A2 1 - A11)(Bl + B12)

P7 = (A 12 - A22)(B 21 + B22)

CII = PI + P4 - P5 + P 7

C 12 = P 3 + P 5

C 2 1 = P 2 + P 4

C22 = PI + P3 - P2 + P6  (3.3)

This method is particularly useful for application to the DAP, if used recursively to reduce the problem to
that of multiplying and adding a series of 32x32 real matrices, which are straightforward and efficient
operations in Fortran-Plus. A slight modification of Strassen's algorithm is required to handle the separate
real and imaginary submatrices, but the recursive partitioning scheme remains intact.

The issue of matrix inversion within the algorithm is more fundamental, as the choice of algorithm is
not obvious. Press, et. al. [16] discuss the merits of Strassen inversion, which is based on an analogous par-
titioning.

32x32 (3.4)
R, = Al-l'

R2 = A21xR 1

R3 = RjxA12

R4 = A21xR 33 R5 = R4 - A 22

R 6 = R5"'

C12 = R3xR 6

C21 = R6xR 2
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R 7 = R 3 xC 21

C = -R6  (3.5)

The recursive partitioning associated with this algorithm makes it particularly attractive for implementation
I on the DAP, as all numerical operations can be performed on Fortan-Plus matrices.

3.2 Further matrix inversion issues
In addition to the estimated covariance matrix KR, often the matrix r is inverted for the purpose of

comparing the results of the EM algorithm with those obtained from (1.7) in an attempt to reconstruct c
using linear processing. This is in the spirit of conventional processing which is based on linear operations.
In addition, this corresponds to the maximum likelihood solution shown in (4.6) in the special case dis-
cussed there. Note that the parallel algorithm for inverting matrices in (3.5) seeks to invert the upper left
block of the original matrix. It happens that, under certain conditions, the upper left block of the matrix r
may be singular, or at least poorly conditioned. As the partitioning is repeated, the algorithm becomes
numerically unstable for a large class of matrices r. Other algorithms which first partition the matrix to be
inverted into its real and imaginary parts suffer the same fate.

If one examines the literature, one finds a wide variety of inversion algorithms based on decomposi-
tions. Each seeks to make the problem more tractable by factoring the matrix in question in such a way
that the factors are easily inverted. Many of these decompositions require that the matrix to be inverted
have a special structure which either KR or r do not satisfy. For example, the LU factorization requires
that all principal submatrices of the matrix in question be non-singular, in order for the algorithm to be
stable [8]. As we have already seen, this may not be true for r.

We have chosen to implement the QR decomposition in Fortran-Plus for this purpose. This routine
factors a square matrix A in in the following way:UA=--QR (3.6)

such that Q is unitary (QtQ = I) and R is upper triangular. This gives rise to the following inversion algo-
rithm:

A- ' = R-Qt (3.7)

Thus the inversion problem has been transformed to the separate problems of calculating the factors,
inverting a triangular matrix, and performing one matrix multiplication. Note that although this process
does not reduce the complexity of the inversion problem, it defines the solution in terms of operations
which are well known.

Unfortunately, the parallel implementation of this inversion strategy is not as computationally
efficient as one might hope, as the operations associated with the QR decomposition can really only be
applied to columns of data at a time. In order to take maximum advantage of the DAP's parallel architec-
ture, such operations should be applied to 32x32 matrices at a time. However, the inverse of F is computed
only once for the purposes of forming the output of conventional processing, while the inverse of KR is
computed at every iteration of the EM algorithm. Therefore, a significant increase in the speed of the algo-
rithm as a whole may be realized if a more efficient parallel routine for computing KR is utilized. Certain
special cases for the transmitted signal give rise to such situations, as discussed in the next section.

I 4. Improvements in Complexity
From the considerations developed in Section 3, it appears that the task of inverting the covariance

matrix KR is a formidable one. In this section we examine under what conditions the complexity of this
operation is lower than first expected.

4.1 Toeplitz-Block Toeplitz structure
Consider the often-used stepped-frenuency waveform [9]. The transmitted signal is made of Nb

bursts of N,, pulses each. The signal transmitted in pulse p, of burst b, is a complex sinusoid at frequency
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P Tf (where fT is the frequency step between successive pulses):

ST (t) = exp[-j 2pf t ], (4.1)

Usually the return signal is sampled at the pulse repetition frequency (1 sample per pulse ; N = Nb NP). If
fT At is an integer, we obtain

ST(nlAt-i A) =exp[j 27tp,,fri Ar], (4.2)

with n =Npb. + p,,, 05b, <Nb 0!5p, <Np. In this instance KR has a special structure, known as
Toeplitz-Block-Toeplitz (TBT) [10]. From (2.2):

KR (n,rm)= Z a(k,i) exp[j2kfD(n-m)At]ST(nAt-iAt)s(mAt-iA'r)
k=0 i=0

= 7, Ya(k ,i) expj2rkfD (n-m )At] exp[j27(p.-pm)friAt]
k=0 i--OI'la,-l-

= Y Ea(k,i)expj2lrkfD (Np(b,-bm)+(p,-p))At]x
k=0 i=O

I expUj27t(p.-p,. friAC]. (4.3)

Thus KR (n, m) is a function of bp-bm and p-p, only. KR possesses a doubly Toeplitz structure: KR is
made of Nb xNb Toeplitz blocks of dimension Np xNp, themselves arranged in a Toeplitz structure.

Special algorithms have been developed for inverting TBT matrices [10,11]. The complexity of
Wax's algorithm is min (NN N, N3 N2). For Nb = NP this is equal to N5 2, which is significantly smaller
than N 3 for large N. The complexity of the TBT matrix inversion problem on a parallel machine has not
yet been investigated.

4.2 Special choice of the parameters
In the special case where IRIcR = N and Frt is the identity matrix, the covariance matrix (2.2) has

the form

K R = Ft(1+No ) r. (4.4)

The trace condition (2.3) becomes

Tr [ 8(Z+N)-l(yy'---N ol)(E+Nol)-l] = 0, (4.5)
* where

y = (r-)tr. 
(4.6)

The covariance to be inverted in this equation is diagonal. Numerically the inversion problem is now
trivial. Actually this equation can even be solved in closed form. The maximum-likelihood estimates are
given by:

3 a(k,i)=max Iy(ki)j2-No,O] (4.7)

It should be noted that for stepped-frequency waveforms, the design IcR = Nb and IR = NP leads to rrt
being the identity matrix. In this instance, lY 12 is the output of the conventional processing for the radar
return, based on Fourier transforms [9]. The ML estimator is obtained by subtracting No from this estimate,
followed by setting negative values to zero.

I 5. Regularization Methods
The ML estimator presented in Section 2 has been shown to offer lower bias and better resolution

than conventional estimators. However the estimates obtained with the estimation setup of Section 2 are
not mean-square consistent. This unfortunate result is due to the the number of parameters ( CR IR) being at
least equal to the number of data (N) in the method used. We are actually dealing with a small-sample
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MLE problem. The situation becomes worse as IRIcR is increased in an attempt to improve resolution.
The estimates are extremely sensitive to small changes in the data and exhibit a very rough shape charac-
terized by very sharp peaks and low valleys.

Such a behavior is of course highly undesirable, and we need a regularization of the estimates. This
concept was introduced by Tikhonov [12].

One possible approach for regularization of the estimates is the method of sieves introduced by
Grenander [13, p. 357]. A sieve in a parameter space A is a family of subsets S(ji) of A indexed by a posi-
tive parameter I called the mesh size. A restricted ML estimate exists over each set S(jI.). As the mesh size
tends to zero the sets S(IX) will be large enough to allow the ML solution to converge to any solution in A.
For the problem at hand the choice of a "good" value of g± will depend on the data record size and the noise
level, among other factors.

A major problem is to find "good" sieves, which will make the ML estimates converge and possess
some desirable practical features such as analytical and/or computational tractability. Recently we pro-
posed a method of sieves for a spectrum estimation problem [14]. The function to be estimated is
represented by a series expansion, and the restricted set S(Q) is the set of series truncated to Q terms.
Essentially the variational matrix 8KR is now constrained in a Q -dimensional subset which will be much
smaller than the set of all possible variations. This method can be extended to the radar imaging problem
as follows [15].

5.1 Definition of a Sieve

I The scattering function o(k,i) can be viewed as a vector in the Euclidean space R""'. Let
W,(k,i), 0 1 <IcR , 0<m <IR , beasetofIcRIR positive basis vectors in R"". It is not required
that this set be orthogonal. Consider the set of all vectors in the span of {W1. } with nonnegative
coefficients:

A : C(k,i)= Y a(l,m)Wi,.(k,i) a(l,m)>O (5.1)
10 m=I

We define our parameter set to be A. The vectors in this set are represented by means of the coefficients
a (l, m) 0 1 < IcR , 0 m < IR. We define a sieve S(QCR, QR) on a(k,i) by truncating the series
representation (5.1) to QCR QR terms. The integers QcR and QR are constrained to be no larger than lCR
and /R, respectively.

aS(QcRQR):= o(k,i)= . a(l,m)t,,(k,i),a(l,m)> (5.2)
1=0 

fn=0

The vectors in this subset are represented by means of QCR QR coefficients
a (1, m) 0 < l < QCR 1 0 < m < QR. We view these coefficients as being QCR QR unknown parameters for
which ML estimates are sought. In [15] we show that consistency of the estimates can be obtained if QCR
and QR grow at an appropriate rate with N. Typically the basis functions that are designed are localized in
range and cross-range (i.e. k and i). Next we show how the ML estimates of the coefficients are com-
puted.

5.2 Algorithm No.1

For each l,m, define the support set Dl,. of W .(k ,i). Also construct a diagonal matrix YIm made of
the samples Wt,, (k, i) and a basis covariance matrix

K, := rt, r. (5.3)

It follows that KR, subject to the sieve constraint, assumes the form
Qt-i Q,-I

KR = I I a(1,m)Km +No1. (5.4)
1=0 M=0

The estimation problem is now to maximize the loglikelihood (2.1) subject to the constraint (5.4). From
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(2.3) and (5.4), a necessary condition for KR to maximize (2.1) is the trace condition

tr[(KRkrrtKR1-K- l)K,]=0, 01 <QCR , 05m <QR (5.5)

The maximization problem is solved using an EM algorithm similar to the one derived in [14]. The com-
plete data are defined as ((cim,}, w ), where cim, O 01 <QCR , Or' <QR, is an ICR'R -vector with
covariance a (1, m) m known up to the scale factor a (1, m). The estimate at step p + 1 of the coefficient
a (1, m) is given by

E [IcL.(k,i)12 r,d(l,m)" )](
d(l,m)(P+')=I l 1,( ,i (5.6)

1 jD1.,I t'i.D.k,
Evaluating the expectation yields the update equation

d (1, m )+) = d(l, m )(P) + (5.7)

Ld(l M))] tr [(K /'-rrtKkf-I- KRl) K,,].IFm
The algorithm is started with positive coefficients a (1, m). Each matrix K,, is constant and can be com-
puted off-line. At each step the covariance matrix K ) must be inverted, which accounts for N 3 opera-
tions. Following this, updating each d(1, m ) just requires N 2 multiplications/additions. The complexity of
each step of the EM algorithm is then

N3 + QCR QRN 2 , (5.8)

I as compared to N 3 
+ ICRIRN 2 in the unconstrained case of §2. This saving is important, as it is now possi-

ble to let lcRlR tend to infinity. However the problem of inverting the covariance matrix is just as difficult
as before. In the next section we show how the method is handled in a special case of interest.

5.3 Algorithm No.2

The regularization method described in §5.2 can be applied to the special case presented in §4.2. In
general the trace condition cannot be solved in closed form, yet the computational requirements are drasti-
cally reduced. The update equation (5.7) becomes

d d(I,m)P') = d(I, m)(P) + 1tm d(l,m)(P)  x

tr [ ((ZI ' ) + NoI)-yyt(Z(P) + NoI)-1 - (1" )+ Nol)- ) 't,, I

=d(l,m)(P) + I ( d(l,m) ' ) ix (5.9)

ID.I yY(k i)12_- (kJi)()-No kJ
t~~, (a(k ,i)0') +N 0) 2 YM (ki•

where the vector y is defined in (4.6). The matrix KR has been reduced to a diagonal form and the numeri-
cal complexity of each iteration is equal to

Qa,-I Q1-

=0 M=0ID.

multiplications/additions. This number is the total area of the support sets of the basis functions. For a dis-
cussion on the design of the basis functions and their support sets we refer to [151. Typically it is required
that the support sets cover the entire range and cross-range domain, so that the complexity is equal to

D ID XI = ICRIR = X N , (5.10)
I I=0 in=0

where the constant X _ I indicates the amount of overlapping of the support sets. This figure is a major
improvement from the corresponding figure in (5.8).
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The special case that was treated in this section is very important, for it can be shown that the esti-
mates obtained with the algorithms of Sections 5.2 and 5.3 using different values for lCR IR are asymptoti-
cally equivalent as N -00 [15]. This result justifies the choice of setting ICRIR = N, followed by using the
latter algorithm, as a valid approach to estimating a(k, i).

I 6. Simulations
We have performed simulations which will allow us to compare the results of the algorithm

described in section 2, the algorithm of section 5, as well as the results of conventional processing. In the
first of these, we designed a series of routines for a massively parallel machine which would generate simu-
lated radar data according to the indicated diffuse target model, and then implement the algorithms of sec-
tion 2 to estimate the target image. Our results here were quite promising. In every case examined, our
algorithm outperformed the conventional processing, and was especially superior in those cases where the
noise level was significant.

There are two sets of plots shown below. They are computed for a scattering function which is a
square of four by four pixels centered in a square of size eight by eight pixels. The intensities of the
scattering function in each of the regions and of the noise are the parameters in the plots shown. The
transmitted signal is a stepped frequency waveform, with one sample taken per pulse. A total of 64 pulses
are transmitted in the simulations with eight bursts of eight pulses each. The frequency step is chosen such
that fTAr equals 0.125.

The first plots show the convergence of the value of the loglikelihood function for single realizations
of the simulation at two background noise levels. The signal to noise ratio indicated on the plots is com-
puted by first taking the ratio of the expected total energy in the signal part of the received signal and divid-
ing by the expected total energy in the noise, and then computing 10 times the log of that number.

The second set of plots shows the summed absolute error between the maximum likelihood image
assuming all of the data (c) is observed and the maximum likelihood image assuming r is observed. These
plots measure the degradation in performance due to the noise and having to invert F. These plots show
that the actual values displayed in the image continue to change even after the likelihood function is close
to its maximum. Visually, this effect is manifested in the image becoming rougher as the iterations
proceed. The regularization methods discussed in section 5 and in [15] take into account more prior infor-
mation known about the scattering function and thus produce less rough images.

E References
[1] A.D. Dempster, N.M. Laird, D.B. Rubin, "Maximum-Likelihood from Incomplete Data via the EM

Algorithm", J. Royal Stat. Soc., vol. B39, pp. 1-37, 1977.
[2] M. I. Miller, D. L. Snyder, "The Role of Likelihood and Entropy in Incomplete-Data Problems:

Applications to Estimating Point-Process Intensities and Toeplitz Constrained Covariances," Proc.
IEEE, vol.75, No.7, July 1987.

[3] J.P. Burg, D.G. Luenberger, D.L. Wenger, "Estimation of Structured Covariance Matrices", Proc.
IEEE, vol. 70, pp. 963-974, Sept. 1982.

[41 D. L. Snyder, J. A. O'Sullivan, M. I. Miller, "The Use Of Maximum-Likelihood Estimation For
Forming Images Of Diffuse Radar-Targets From Delay-Doppler Data," IEEE Trans. on Information
Theory, vol. 35, No. 3, May 1989, pp.536-548.

[5] H.L. Van Trees, "Detection, Estimation, and Modulation Theory, Part I", Wiley and Sons, New York
1968.

[6] J. Shapiro, B.A. Capron, and R. C. Hamey, "Imaging and Target Detection with a Heterodyne-
Reception Optical Radar," Applied Optics, vol. 20, pp. 3293-3313, 1981.

[7] J. A. O'Sullivan, P. Moulin, D. L. Snyder, "Cramer-Rao Bounds for Constrained Spectrum Estima-*tion with Application to a Problem in Radar Imaging", Proc. 26th Allerton Conference on Communi-
cation, Control, and Computing, Urbana-Champaign, IL, 1988, pp. 27-34.

I -61-



i -11-

[8] C.H. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore,
MD, 1989.

[9] D.R. Wehner, High Resolution Radar, Artech House, Norwood, MA, 1987
[10] M. Wax and T. Kailath, Efficient Inversion of Toeplitz-Block Toeplitz Matrix, IEEE Trans. on

ASSP, vol. 31, No 5,1983.

[11] H. Akaike, Block Toeplitz Matrix Inversion, SIAM J. Applied Math.. vol. 24, No. 2, 1973.

[12] A. Tikhonov, V. Arsenin, Solutions of Ill-Posed Problems, Winston & Sons, Washington D.C. 1977.

[13] Grenander U., Abstract Inference, Wiley 1981.

[14] P. Moulin, D.L. Snyder, J.A. O'Sullivan, "A Sieve-Constrained Maximum-Likelihood Estimator for
* the Spectrum of a Gaussian Process," Proc. 27th Allerton Conference on Communication, Control,

and Computing, Urbana-Champaign, IL, 1989.

[15] P. Moulin, D.Sc. Dissertation, Washington University, St. Louis, May 1990.

[16] W. H. Press, et al., Numerical Recipes in C: The Art of Scientific Computation, Cambridge Univer-
sity Press, Cambridge, 1988.

II
I
I
I
I
I
I
I

I -62-



Performance of MLE for two values of SNRI -200

-220- 0d

-240-

-300-

-320-

-34 0 5 1 10 1 .5 2 0 2 .5 3 10 3 .5 4 .0 4 .5 50

Iterations

I6



Performance of MLE for four values of SNR
200 - -------

180-. .... -10 dB

* 160*-

wU 140-

I ~ 120-

40d

I 0540 15 20 25 30 31055

3 Iterations

I6



U
I
I

i 6.6 Preprint of: J. A. O'Sullivan and D. L. Snyder, "High Resolution Radar Imaging Using

Spectrum Estimation Methods," Proc. August 1989 Program on Signal Processing, Institute

i for Mathematics and Its Applications, University of Minnesota, Minneapolis MN, to appear.

i

I
i
i
i
i

I
i

I -65 -



I
I

HIGH RESOLUTION RADAR IMAGING USING SPECTRUM ESTIMATION METHODS

JOSEPH A. O'SULLIVAN
DONALD L. SNYDER t

Abstract. This paper summarizes a new approach to high resolution radar imaging based on modern
spectrum estimation techniques. First a statistical model of the radar reflections which properly accounts
for the randomness of reflections by targets which are rough on the order of a wavelength of the carrier
frequency is introduced. The model for the radar return signal is valid for all transmitted narrowband radar
signals. Equations which generate maximum likelihood estimates for the reflectivity power as a function of
delay and Doppler coordinates are derived.

Introduction. This paper presents recent research results in high resolution delay-Doppler radar
imaging based on statistical models obtained from the underlying physics of spotlight mode radar
reflections. We present solution equations which may be used to process radar return signals to form
images. These equations bear a strong resemblance to the equations derived in [1] for the generic Toeplitz
covariance estimation problem. This is a result of the fact that the reflectivity process which characterizes
the target is a random process which is stationary at each delay. Thus the samples of the reflectivity
process have Toeplitz covariances and the problem of estimating the parameters of the underlying spectra
reduces to a Toeplitz covariance estimation problem. We take circulant extensions of the covariance
matrices and estimate spectrum samples. There are several aspects of this problem which differ
significantly from the generic problem, but the underlying problem is to estimate Toeplitz covariance
matrices.

The model of the reflectivity process is described first. Since the processing is performed digitally,
the discrete form of this model is examined in detail. Next, the manner in which the transmitted signal
interacts with the reflectivity to form the radar return signal is presented. The imaging problem is reduced
to the problem of estimating the spectrum underlying the reflectivity process given samples of the radar
return signal. A necessary condition for the maximum likelihood solution is obtained and an EM algorithm
approach to solving for the maximum is taken. The results extend those in (I] in three important ways.
First, the samples of the process with a Toeplitz covariance are not available. Instead, the stationary
process is multiplied by a signal matrix. Second, the model includes an additive white Gaussian noise.
Third, the process of interest is a function of two variables. For each value of the delay variable, the
process is Toeplitz. Thus the model from [] is extended to spectra which change as a function of an
independent variable.I

Reflectivity process. The target is described in terms of its reflectivity. It is assumed that the radar
transmitted signal is a plane wave at the target so points on the target at a cross-section perpendicular to the
line of sight sum up to contrbute to the same return signal. This sum changes as a function of time and is
denoted by y (t,?). The variable r is the distance of points on the target from the transmitter given in time

units as the time it takes for a wave to propagate to the target and back to the transmitter (two-way delay).
From this model it is not apparent that separate points at the same two-way delay t may be differentiated to

-- obtain an image. These points may be differentiated if their velocities relative to the transmitter are
different. In particular, if the target is a rigid body and is rotating about a point along the line of sight, then
the velocity of a point in the direction of the transmitter is proportional to the distance of that point from

t Both authors am with de Electronic Systems and Signals Research Laboratory, Depatnent of Electrical Engineering.

Washington University, St. Louis. MO 63130. Mis work was supported by contract number N00014-86-K-0370 frotn the

Office of Naval Research.
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the line of sight. Since the Doppler shift introduced by a point on the target is proportional to this directed
velocity, a delay-Doppler image of a rotating rigid body is equivalent to a range-crossrange image. The
problem is to determine the power reflected from points as a function of delay and Doppler and then to
display this power function as an image of the target. Even if this rigid body assumption for the target is
not valid, a delay-Doppler image can be a useful image of the target region.

Since the reflectivity y (t ,) is the superposition of all reflectivities at delay r times the Doppler shift
terms they introduce, it may be expressed as

y (t,-) = ic (f ,)eij2fdf, (1)

where c (f ,;r) is the reflectivity of the points on the target at two-way delay r which introduce a Doppler
shift f. The target is assumed to have finite extent. This implies that both y (t,t) and c (f ,r) are zero for -C
outside of some fixed interval. It also implies that c (f ,) is zero for f outside of some finite interval
because the Doppler variable corresponds to crossrange extent of the target. The processing is assumed to
be performed digitally so that discretized versions of y and c are used. Suppose that the resolution cells of
f and t: are Af and AT respectively. Let there be IR bins in the delay or range direction (in delay
coordinates, the target is of length IR Ax/2) and let there be IcR bins in the Doppler or cross range direction
(so the target is of width Ici Af). If samples of the radar return signal are taken every At seconds,3 Equation (1) may be approximated by

y(k Atjs Ar) c(mn)ej 2xkAf& , (2)

I where

c (m ,n) = c (m Af ,n A'T)Af. (3)

I The literature on radar reflections (2,31 describes statistical models for the reflectivity when the
target is rough on the order of a wavelength of the carrier signal. The model states that the reflectivity of a
patch on the target is a complex valued Gaussian random variable with zero mean and is uncorrelated from
patch to patch. For our model this corresponds to the assumptions on the reflectivity of patches of the
target

IE [cE(i *c)c (m ,n)] = 0(i k)8 5kA. (4)

Here, a(i ,k) is the real, nonnegative covariance of the reflectivity of the patch at delay k and Doppler i.
The scatterers described by this model are called wide-sense stationary uncorrelated scatterers (WSSUS)
by Van Trees [2] because the assumptions imply that

I where y (i k) = y (i At-k A'/2AZ) and

K (nk) ( mk)e 2-4A* (6)

Let yG(k) be the vector of samples from delay k

3 yo(k)' = [y(Ok) y(lk) y(2,k) y(G-Ik) ]. (7)

The covariance matrix for yG(k) is a Toeplitz matrix K (k) whose i m element is KG(i-mk). The
restriction imposed by the constraint of a target of finite extent is represented by Equation (6). That is, the
only cr(mk) which can be nonzero are for -(ICR-I)/ 2 S m S (IcR-1) 2 and 05 k < 5R -1. This constraint
on m is only meaningful if Af AJcR is less than one and it limits the KG (k) possible. If Af At = 1IN, then
the a(m ,k) may be thought of as samples of the spectrum of the periodic extension of the covariance
matrix at delay k. Only lcR (IcR <N) of the spectrum samples at each delay are nonzero.

We now introduce larger vectors and matrices so that the results which follow may be written
compactly. The yG(k) are loaded into one GIRxI vector yr. The covariance of Yc is a block diagonal
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matrix K0 whose k'h diagonal block is Ko(k). Define Z(k) to be the IcR xcR diagonal matrix

S(k)=diag[a(Ok) a(l1k) a(2,k) ... a(-2,k) 7(-lk)I (8)

and define Z to be theIRlcRxJRIcR block diagonal matrix whose kh block is E(k). Then we have

K0 (k) = WbtJR Z(k)JcR WG (9)
where W is an Nx normalized DFr matrix (N > G, N > IcR), WG consists of the first G columns of W,
and

where JCR is ICRx.N, I is an identity matrix of dimension (Ic(+l)/2, and 12 is an identity matrix of

dimension (IcR-I)/2 . JcR implements the assumption that some spectrum samples are zero. Having now
defined several matrices, with a little more notation we can give a more precise relationship between the
matrix M and the matrix Kg. Let lcR be the IRIcRxRN block diagonal matrix each of whose IR blocks is
JCR. Let MR be the IRNxRG block diagonal matrix each of whose IR blocks is JR (JR is NxG and
equals [ I 0 ]'). Finally, let W be the NIRxNIR block diagonal matrix each of whose IR blocks equals W.
Then3KG = Mk *tM& 1R MR . (11)

Except for constraining some spectrum samples to be zero, if samples of YG (k) from each delay k
were directly available, this problem would be very similar to that from [1] and the approach to the solution
almost identical. Instead, for our problem, we have the data r which is described below.

Radar data. In a radar system, each signal is typically described as the product of a baseband signal
times a complex exponential at the carrier frequency. All of the interactions of interest for narrow band
radar systems may be described in terms of these complex valued baseband signals which will be called3 complex envelopes of the signals or simply the signals.

Let sT (t) and sR (t) be the complex envelopes of the transmitted and received signals, respectively.
The distance of a point on the target from the transmitter/receiver is measured in time units as the two-way
delay. The received signal is the superposition of the reflectivity from all two-way delays times the
appropriate transmitted signals,

m SR () = ST(t--T)y (t--12,,r)d. (12)

In Equation (12), the /2 arises because it takes that long for the transmitted signal to get to a point at two-
way delay T. The available data are the sum of the radar return signal and additive white Gaussian noise

r(t)= sR(t)+ w(t)

r(t) = sr(t.-'r)y(t-T/2,)dt + w(t) . (13)

This equation forms the basis for our model. We now assume that samples of the data are available and we
wish to estimate the covariance of the reflectivities from patches on the target The sampled version of3 Equation (13) is

r(k) ='sr(kt-nA)y(kAt-nAT2,nAr) + w(k) . (14)

Given G samples r(k), 0k<G-1, we may write Equation (14) in vector form as

r=VSty+w , (15)3 where r is the vector of samples r(k); w is a white noise vector with covariance Nol; y is the GIRxI vector
of samples of the reflectivity of the target described above; and S t is a G xGIR matrix composed of IR
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G xG submatrices each of which is diagonal:

wr S =IO St S2 ... St.-], (16)
where

I Now S. =diag(sr(-nA') sr(At-nA') sr(2&-nA'C) ... ST((G--)At-nAt)].

Note that Equation (15) could also be writn in terms of samples of c (f ,t) as

r= tc + w, (17)

I where c is an IR cxl vector of samples of the reflectivity of the target arranged as IR subvectors each of
length IcR of the samples from each delay and r" is a G 4 R Ic matrix each element of which is a product
of a sample of sr times a complex exponential. More explicitly, r is given by

r = Mc, WMR ST. (18)

There are obviously issues associated with the appropriate or desired sampling rates of r (t) and of
c(f ,t). Some of these issues are addressed in [4]. The quality of the image obtained and the resolution
achievable are intimately related to the sampling issues.

Since r is the result of linear operations on Gaussian random variables, r is a zero mean Gaussian
random variable with covariance

K, = S KG ST+No =rFtn-+ N, (19)

I
Maximum likelihood solution. The loglikelihood function for the data is

3 L (K, ;r) = -ln(detK,) - rt(K, )-r. (20)

As shown first by Burg, et al. [51 a necessary condition for a matrix to maximize the loglikelihood function
is the trace condition tr (KfftrrtKjt - KI)K ] = 0. (21)

The matrix 8K, is a variational matrix which takes values in all possible additive variations of the matrix
K,. The set of possible K, is described by Equation (19). If we rewrite the trace condition in terms of
K0 , then we get

tr [Sr(SJfKG Sr + Nol)-I(rr t - SJKG ST - NoI)(S I ST + No)-SISTKG I = 0. (22)

Equation (22) shows the three ways in which the present spectumn estimation problem differs from that in
[1]. Frst, there is the signal matrix ST appearing in (22) multiplying KG wherever it appears. Second, the
additive noise manifests its influence in the equation above through the appearance of NOl. Third, the
matrix KG in Equation (22) is a block diagonal matrix with Toeplitz blocks, not merely Toeplitz. Despite
these differences an EM algorithmic approach to the solution can be derived in much the same way as in
[li.

For each delay k, define the complete data vector yN (k) to be the periodic extension of the data
vector yG(k)

yNi(k) =[yo(k)' YA(k)' 1 (23)

-- where yA(k) is an (N-G)xl vector which augments y0 (k) to obtain a full period sample of the periodic
process. Let yN be the NIRxI vector made by stacking the yN (k) to form one long vector. The complete

-- data loglikelihood isI L (KN ;yv) = - (In(detKN)) - yA(Kv)-1yv, (24)

where KN is a block diagonal matrix with each of the IR blocks being a circulant Toeplitz matrix.
Premultiplying KN by * and postmultiplying by W1 yields a diagonal matrix. This diagonal matrix

consists of the samples of the spectrum, some of which are constrained to be zero by the assumption of a
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target of finite extent. This constraint results in

KN = WtM& McRW. (25)

What this implies is that after rotating the data YN using the orthogonal matrix *, some of the entries of the
resulting vector are zero. These elements may be removed from consideration by multiplying the resulting
data by McR, giving a vector of uncorrelated samples of a process whose covariance matrix is given by Z

C = MCR WYN (26)

E[cct = Z . (27)
This vector c is the same as in Equation (17). Under the assumptions stated, the matrix KN is not
invertible. The reflectivity, however, almost surely does not have a component in the null space of KN so
we can make some sense of the complete data loglikelihood (24). A more correct way to write the
complete data loglikelihood is in terms of the rotated coordinates c and its covariance Z:

1-1 (1 -Y2

The EM algorithm is an iterative algorithm which at each step updates the estimate for the Z by
maximizing the conditional expected value of the complete data loglikelihood over T. The E-step of the
EM algorithm performs the expected value of (28) given the incomplete data and the previous estimate for
Z. The M-step consists of maximizing the result of this expectation over the a(i ,k). Since the complete
data loglikelihood in rotated coordinates separates into the sum of independent samples in (28), the result
of taking the maximum over the spectral values at step p+I is just

)(,k) = E (ic (i ,k)21 I ),r. (29)3 The estimate of the covariance of yN at step p+1 is found by transforming back to those coordinates
I N-1

K,'l)(l-n ,k) = 7..E [yN(m ,k)y;(<m+1-n >M,k)Ir,K")]. (30)

3 This equation makes sense intuitively. It says that to find the maximum likelihood estimate over the
constrained set of Toeplitz covariances, augment the covariance matrix at each delay with the conditional
mean and mean square estimates of the missing lags. At the convergence point of the algorithm, the
covariance estimates equal the conditional mean estimates of the lag products.

Returning to Equation (27), the estimate at step p+1 of Z is given by the diagonal elements of the
conditional expectation of cct or

where = means that the off diagonal terms on the left are zero and the diagonal terms on the left equal the
diagonal terms on the right. The computation indicated in (31) is a standard problem in estimation theory.
This equation may be written as [41

Z(V ) I z (0 ) + v)F(rtv)F + NoD)-'(rr - FwoF - Nol)(wr )r + Noi)-rtZ(P). (32)

Equation (32) defines the iteration sequence used by the computations. The diagonal elements of Z are the
values which are displayed as the scattering function image of the target. Thus, at each stage an image is
calculated and may be displayed. Some appropriate stopping criterion is used to terminate the algorithm.
It should be pointed out that at each stage of the algorithm the conditional mean estimate of the reflectance
is also generated. At step p, this estimate is

I E [clV,r] = v)rmwr + NOD)-'r. (33)

The magnitude or the magnitude squared of c are commonly viewed as images of the target. Thus both
types of radar image commonly viewed are generated by our algorithm. We feel this is a unique feature of
our algorithm.
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Let the corresponding sequence of covaiance matrices for the data r be denoted
KkP) = fm r)r + No1. Since this iteration is an EM algorithm, it has all of the properties associated with
this type of algorithm. In particular, the incomplete data loglikelihood is nondecreasing in the sequence ofcovariance matrices Kf').

This section has presented a derivation of the equations used to produce target images. This
approach starts with a model which accurately accounts for the random nature of radar reflections and
adopts the maximum likelihood method of statistics to estimate delay-Doppler high resolution images of
radar targets. Questions associated with uniqueness of spectrum estimates and convergence of the EM
algorithm are discussed in the following section.

Convergence issues. This section addresses some of the convergence questions associated with the
the EM algorithms proposed in earlier sections. These results are stated so that they apply to both the radar
imaging problem studied here and the Toeplitz estimation problem from [1]. Let the integer M stand for

IRIcR in the radar problem. The matrix F refers to the r from the last section or simply to WG if we are
discussing the original Toeplitz problem. Also, No is zero for the original Toeplizz problem.

One question of importance is the uniqueness of estimates of the parameters of interest. This
question is addressed by looking at the Cramer-Rao bounds on the variance of estimates. The Cramer-Rao
bounds are obtained by inverting the Fisher information matrix. When the Fisher information matrix is
singular, these bounds are infinite. It is shown how singularity of the Fisher information matrix
corresponds to nonuniqueness of parameter estimates.
Definition: Let yk denote the kh row of the MxG matrix r. The MxG2 matrix F has k h row given by
yk @y, where 0 denotes the kronecker product.

Theorem 1: The Fisher information matrix for estimating Z given data r is equal to

F(Ki0Kj r t)Ft . (34)

Proof: The Fisher information matrix is just the negative of the expected value of the second derivative of
the log-likelihood function. This second derivative is evaluated in the appendix of [4] and taking the
expected value yields the above expression.
Theoren 2: Suppose the Fisher information matrix in (34) is singular and that the matrix KR is positive
definite. Then there does not exist a Z which is positive definite which yields a unique maximum of the
log-likelihood.

Proof: Since the rank of the matrix KXe'®Kijt equals G2, and by the form of the matrix, the Fisher
information matrix is singular if and only if the matrix F has rank less than M if and only if there exists a
real vector s such that Fts = 0. Such an s exists if and only if there exists a real diagonal matrix D
(D =di g (s)) such that

I rt(.+-D )r = r zr (35)

for all ,,2l a. If I is positive definite and maximizes the log-likelihood, then there exists a 03 such that for
all 0:< ct5 P the matrix Z + aD is nonnegative definite and yields the same covariance matrix and hence
the same value for the log-likelihood.
CorolLry 1: For the spectrum estimation problem from (1], there does not exist a positive definite Z which
yields a unique maximum of the log-likelihood if N > 2G-1.

Proof: The matrix F constructed above has rank less than or equal to 2G -1.

Note that this theorem does not say that the estimate of the Toeplitz covariance matrices generated
by the algorithm am not unique. The theorem and its corollary relate to the uniqueness of the spectrum
samples. For some problems the parameters of interest are in the covariance matrix KR or in the Toeplitz
matrix KG. There could be (and indeed are for M large enough) many Z which yield the same estimate for
KR. Theorem 2 can be applied to problems where one desires to know how big to make N. In general, it
is desired to have N as short as possible in order to reduce the number of parameters to be estimated. If it
can be shown that with a given N there exists a positive definite matrix which yields the maximum
likelihood estimate for the covariance matrix and the conditions of the theorem are satisfied, then one

I- - 71-



I
I

might consider using a smaller N to reduce the size of L

For some problems, including the radar problem, it is the matrix Z which is of interest. For these
problems, it is very important to know when the estimate is unique. The radar imaging problem is one
example. In the radar problem, the result which is displayed as an image is an army whose elements are
the diagonal entries from 7 In order to be able to generate a unique image, the conditions of theorem 2
must be satisfied.

Some of the issues associated with convergence of the EM algorithm for the problems described are
addressed next. The following material is adapted froM the material in (1] to be applicable to the radar
problem as well.

Definition: Let KI be the set of 2_sitive definite matrices KR given by Equation (19) whose entries are
bounded by some number a. Let KR be the closure of K1, the set of nonnegative definite matrices of this
parameterized form.

The important issues for the following theorems are not the matrices which go into F. What is
important is that any KR r KR may be written as

KR =%a(k)yty +NoI, (36)

where yt is the k' row of r which is fixed once the model is specified. The only parameters which must
be found are the a(k) which are specified to be greater than or equal to zero. An element of KR must have
No equal to zero. This is an important case for which we wish to guarantee that the estimate of KR is
nonsingular. Clearly for any fixed b the set KR is compact.

Theorem 3: Let r be any fied M xG matrix with complex entries. Let r be an observation of a G xl 0-
mean Gaussian random vector whose covariance is some positive definite hermitian symmetric matrix.
Then

a) There does not exist a singular KR e Kk such that r is in the range space of KR, with probability one.

b) The log-likelihood function is bounded from above over the set KR, with probability one.

Proof: a) Suppose that any G rows of r are linearly independent. Since KR is given by (36), a singular
I matrix in this class must be given by

KA = Yacr(k)yk, (37)

where Jc(O,l,2,...,M-1) consists of G-1 or fewer integers which correspond to the nonzero diagonal
entries of Z. Since the true covariance for r is nonsingular, the probability that r lies in the subspace
spanned by (ytilk eJ) is zero. Since there are a finite number of such spaces and the probability that r is in
any one of them is zero, the probability that r is in the range of any singular KR in the set is zero. If any G
rows are not independent, then singular matrices may be written as the sum of more than G-1 outer
products y 'yt. But the data would still have to lie in a subspace spanned by fewer than G independent
vectors and thus the probability of this is zero and this pan of the theorem follows.

b) This part follows from (61 where it is shown that the log-likelihood function is bounded above when the
data are not in the range space of a singular covariance matrix in the set in question. The proof is based on
the following facts. First if K, is nonsingular and its eigenvalues are bounded from above and below, the

log-likelihood is bounded. Second, if K, is singular and the data are in its range, the log-likelihood is
unbounded above; but this is a zero probability even. Third, if K, is singular (with rank n) and the data are
not in its range, the log-likelihood is unbounded from below. This is shown by writing Kr as the limit as
e - 0 of K, + r(eI)r. We examine the loglikelihood (20) when r is not in the range of KR. The term
-ln(det(K, + eC'ID)) has bounded terms and an unbounded component of the form -(G -n )ln(e). The term
-re(KR + elfY'-r has bounded terms and an unbounded component of the form -c /e, where c is some
positive number. Then,

-!5-(G-n ..- (38)

There are more facts needed to prove convergence. One fact is that the log-likelihood is increasing

at each step of the algorithm. Another is that the iterates stay in a bounded set so that the above theorems
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apply. The theorems before this point apply to the problem no matter what algorithm is used to find the
maximum likelihood estimate, while the theorems that follow apply for our particular algorithm.

Theorem 4: The iterates defined by the EM algorithm (32) produce a sequence of log-likelihoods which
are nondecreasing.3L (Kk');r) - L (K');r) > Q (Khl' ) I Kk)) - Q (Kk) I Kk)) 2 0

where L (.;.) is the log-likelihood for the problem.

Proof: This is just a result of the sequence being generated by an EM algorithm (7, 81.
Theorem S: L (KA'*);r) = L (KA)'r) if and only #VP 1) = V).

Proof: This is a result of the concavity of the complete data log-likelihood. Take the second derivative
with respect to the variable being maximized, L For each diagonal entry of Z this derivative is either
positive or zero. It's zero if and only if the previous corresponding entry of E is zero, and this entry would
remain zero. Thus the maximizer is unique and is given by E(' ). By the inequality from the theorem 3,

theorem 4 follows.

The one last theorem we would like to have is that the iterates remain in a bounded set. It has been
our experience in computations that the iterates do remain bounded, but we have had trouble proving this in
the general case. We have observed in computations that Z may tend to a singular limit. This is not
precluded by any of the above theorems. In fact, for our radar imaging problem we do not wish to exclude
this possibility since a zero estimate of the power reflected from a point simply means that there is no target
at that point.I

Conclusions. We have presented an algorithm for generating images of radar targets in the delay-
Doppler plane. The approach has been estimation based because of our assumption of targets which are
rough on the order of a wavelength of the carrier frequency. Some of the theoretical properties of this
approach and uniqueness of estimates have been discussed. Presently we are implementing the proposed

algorithm and performing computational studies. We are also addressing several theoretical issues. One
issue of particular importance is the incorporation of specular components in the algorithm. These points
would have a different statistical characterization than the diffuse components considered here and a
correspondingly altered loglikelihood to be maximized. Computationally, we are examining the
convergence of our algorithm, its computational complexity, and comparing the performance of the
algorithm to other approaches.
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